6 septembre 2019 | International, Aérospatial

Killing programs is ‘like working out,’ says acting US Army secretary

By: David B. Larter

WASHINGTON — The U.S. Army's program-killing project known as “night court” will continue and become more aggressive in the coming years as demands for the service's modernization effort increase, the Army's acting secretary said Wednesday.

Named after the 1980s-era sitcom and a nod to the long hours worked by staff to pull it off, night court in 2018 identified $25 billion in savings and scrapped modernization efforts that the Army plans to use to finance new technologies. Acting Army Secretary Ryan McCarthy announced another $10 billion of savings in May.

But keeping night court alive will require a deliberate effort until it becomes routine, McCarthy told the audience at the third annual Defense News Conference.

“Night court is kind of like working out: You've got to get up, you've got to get after it,” McCarthy said. “It's hard. It wears you out. You think: ‘Boy, it would be easier to just stay in bed.' But it's necessary to keep the institution strong. We believe it has been institutionalized. ... But we've got to keep up the repetitions, and over time it will become a behavior, like a reflex.”

McCarthy, who is expected to face a confirmation hearing to become Army secretary later this month, said as Army Futures Command's cross-functional teams identify requirements for the next generation of Army systems, the effort must become more aggressive.

“What we've done in the cross-functional teams, those efforts have been successful,” McCarthy said. "So as we continue to go down the development pipe, they are going to come back with a requirement we are going to need X numbers of systems to lay in across our formations. And as we scale that out over time, that will cost more money.

“So, when you look at where are the opportunities, you have to make choices — divestiture. Legacy systems that we have enjoyed for decades that have performed for us in combat operations for going on 18 years now, some of them will have to go away.”

Defense Secretary Mark Esper, who formerly served as the Army secretary and championed the service's effort, signaled he will continue night court Pentagon-wide, something that will test his political clout as services are often loathed to give up reliable legacy systems, and lawmakers is even less willing to give up jobs in their districts that would be threatened by program cuts.

But, McCarthy said, the effort is necessary to finance the new technologies the Pentagon needs to gain an advantage over China and Russia.

“Night court will continue. In fact, night court is going prime time with Secretary Esper down the hall,” he said. “It's necessary to find as much trade space within that [$741 billion] in the '20 and '21 budgets to find every penny we can to finance our ambitions. Every investment program has a divestiture.”

https://www.defensenews.com/smr/defense-news-conference/2019/09/05/killing-programs-is-like-working-out-acting-army-secretary-says

Sur le même sujet

  • Hypersonics: DoD Wants ‘Hundreds of Weapons’ ASAP

    27 avril 2020 | International, Aérospatial

    Hypersonics: DoD Wants ‘Hundreds of Weapons’ ASAP

    “We want to deliver hypersonics at scale,” said R&D director Mark Lewis, from air-breathing cruise missiles to rocket-boosted gliders that fly through space. By SYDNEY J. FREEDBERG JR. WASHINGTON: The Pentagon has created a “war room” to ramp up production of hypersonic weapons from a handful of prototypes over the last decade to “hundreds of weapons” in the near future, a senior official said Wednesday. Those weapons will range from huge rocket-powered boost-glide missiles, fired from Army trucks and Navy submarines at more than Mach 10, to more compact and affordable air-breathing cruise missiles, fired from aircraft at a relatively modest Mach 5-plus. “It isn't an either-or,” said Mark Lewis, modernization director for Pentagon R&D chief Mike Griffin. “It isn't rocket-boost or air-breathing, we actually want both, because those systems do different things.” Right now, however, US combat units have neither. Inconsistent focus and funding over the years means that “we had a number of programs in the department that were very solid technology development programs, but at the end of those programs, we would have prototypes and we'd have weapons in the single-digit counts,” Lewis said during a webcast with the Air Force Association's Mitchell Institute. “If you've got a program that delivers eight missiles and then stops, well, which of the thousand targets in our target set are we going to use those eight missiles against?” With hypersonics now a top priority for both Undersecretary Griffin and Defense Secretary Mark Esper, the Pentagon is trying to improve that stop-and-go track record with a new “hypersonic acceleration plan” – no pun intended, Lewis said. Griffin likes to compare the effort to the Cold War, when the US had a massive nuclear weapons infrastructure capable of building complex components by the tens of thousands. “We want to deliver hypersonics at scale,” Lewis said. “That means hundreds of weapons in a short period of time in the hands of the warfighter.” Mass-production, in turn, requires production facilities – but today hypersonic prototypes are basically hand-crafted by R&D labs like Sandia. Lewis and his counterpart in the Pentagon's acquisition & sustainment directorate, Kevin Fahey, are “co-chairing what we're were calling a war room ... looking at the hypersonic industrial base,” he said. “That's not just the primes, but the entire industrial base” down to small, specialized suppliers. Controlling cost is both essential to large-scale production and a huge challenge, Lewis acknowledged. “We don't know what these things cost yet,” he said. “We've asked the primes to consider costs as they're developing.” Which hypersonic weapons the Pentagon buys also makes a major difference. “There are some technology choices we can make that lead us to more cost-effective systems,” he said. “I'm especially enthusiastic about hypersonic weapons that come off the wings of airplanes and come out of bomb bays, [because] I think those are some of the keys to delivering hypersonic capabilities at scale and moderate cost.” Likewise, “[there's] larger investment now in the rocket boost systems,” Lewis said, “[but] one of the reasons I'm so enthusiastic about scramjet-powered systems, air-breathing systems is I think that, fundamentally, they can be lower-cost than their rocket-boosted alternatives.” Why is that? Understanding the policy, it turns out, requires a basic understanding of the physics. Breaking Defense graphic from DoD data Four Types of Hypersonics “Hypersonics isn't a single thing,” Lewis said. “It's a range of applications, a range of attributes, [defined by] the combination of speed and maneuverability and trajectory.” To put it in simple terms – and I'll beg the forgiveness of any aerospace engineers reading this – there are two kinds of hypersonic projectile, based on how they fly: one is an air-breathing engine flying through the atmosphere, like a jet plane or cruise missile; the other is a rocket booster arcing to the edge of space, like an ICBM. There are also two kinds of platform you can launch from: an aircraft in flight high and fast above the earth, or a relatively slow-moving vehicle on or below the surface, like an Army truck, Navy warship or submarine. Combine these and you get four types. Lewis thinks all four could be worth pursuing, although the Pentagon currently has programs – that we know about – for only three: Air-launched boost-glide: Air Force ARRW (Air-launched Rapid Response Weapon). The Air Force also had another program in this category, HCSW (Hypersonic Conventional Strike Weapon), but they canceled it to focus on ARRW, which the service considers more innovative and promising. Surface-launched boost-glide: Army LRHW (Long Range Hypersonic Weapon) and Navy CPS (Conventional Prompt Strike). Both weapons share the same rocket booster, built by the Navy, and the same Common Hypersonic Glide Body, built by the Army, but one tailors the package to launch from a wheeled vehicle and the other from a submarine. Air-launched air-breathing: HAWC (Hypersonic Air-breathing Weapons Concept) and HSW-ab (Hypersonic Strike Weapon-air breathing). Arguably the most challenging and cutting-edge technology, these programs are both currently run by DARPA, which specializes in high-risk, high-return research, but they'll be handed over to the Air Force when they mature. Surface-launched air-breathing: This is the one category not in development – at least not in the unclassified world. But Lewis said, “eventually, you could see some ground-launched air breathers as well. I personally think those are very promising.” Each of these has its own advantages and disadvantages, Lewis explained. Rocket boosters are proven technology, offering tremendous speed and range. The Minuteman III ICBM, introduced in 1970, can travel over 6,000 miles at Mach 23. Their one drawback is that ICBMs can't steer. Once launched, they follow a predictable course like a cannon ball, which is why they're called ballistic missiles. The big innovation of boost-glide weaponry is that it replaces the traditional warhead with an agile glider. Once the rocket booster burns out, the glide body detaches and coasts the rest of the way, skipping nimbly across the upper layers of the atmosphere like a stone across the pond. But boost-glide has some big limitations. First, once the rocket booster detaches, the glide body has no engine of its own so it just coasts, losing speed throughout its flight. Second, precisely because the rocket launch is so powerful, it puts tremendous strain on the weapon, whose delicate electronics must be hardened against shock and heat. Third, the booster is big, because a rocket not only has to carry fuel, it has to carry tanks of oxygen to burn the fuel. Breaking Defense graphic from DoD data An air-breathing engine, by contrast, can be significantly smaller. It just has to carry the fuel, because it can scoop up all the oxygen it needs from the atmosphere. That means the whole weapon can be smaller, making it much easier to fit on an aircraft, and that it can accelerate freely during flight instead of just coasting, making it more maneuverable. But while conventional jet engines are well-proven technology, they don't function at hypersonic speeds, because the airflow pours their intakes far too fast. So you need a sophisticated alternative such as a scramjet, a complex, costly technology so far found only on experimental vehicles, like the Air Force's revolutionary Boeing X-51. Even with a scramjet, you can't fly too high because the air doesn't provide the needed oxygen. That means air-breathing weapons can't reach the same near-space altitudes as boost-glide missiles. They also can't fly nearly as fast. Lewis expects air-breathers will probably top out around Mach 7, half or less the peak speed of a boost-glide weapon. (That said, remember the glider will have slowed down somewhat by the time it reaches the target). Sandia National Laboratories glide vehicle, the ancestor of the Army-built Common Hypersonic Glide Body The platform you launch from also has a major impact on performance. Warships, submarines, and long-bodied heavy trucks can carry bigger weapons than aircraft, but the weapons they carry need to be bigger because they have to start from low altitude and low speed and go all the way to high-altitude hypersonic flight. By contrast, an air-launched weapon doesn't need to be as big, because it's already flying high and fast even before it turns on its motor. All these factors suggest that the big boost-glide weapons are probably best launched from land or sea, the smaller air-breathing ones from aircraft in flight. But since boost-gliders go farther and faster than air-breathers, you still want them as an option for your bombers for certain targets. On the flipside, while a naval vessel or ground vehicle has plenty of room to carry boost-glide weapons for ultra-long-range strikes, it can also use the same space to carry a larger number of the smaller air-breathers for closer targets. “We're interested in basically the full range,” Lewis said. “We've got some ideas of things we want to put into play quickly, but we're also extremely open-minded about future applications, future technologies.” https://breakingdefense.com/2020/04/hypersonics-dod-wants-hundreds-of-weapons-asap/

  • DARPA Awards Six Teams During Final Spectrum Collaboration Challenge Qualifier

    20 décembre 2018 | International, C4ISR

    DARPA Awards Six Teams During Final Spectrum Collaboration Challenge Qualifier

    On December 12, DARPA held the second preliminary event of the Spectrum Collaboration Challenge (SC2) – the world's first collaborative machine-intelligence competition to overcome spectrum scarcity. Fifteen teams represented by members from across the academic, commercial and defense landscapes gathered at Johns Hopkins University Applied Physics Laboratory (APL) to pit their intelligent radio designs against each other in a head-to-head competition. At the event's conclusion, six of the eight top-scoring teams walked away with $750,000 each in prize money. While not all competitors received interim prizes, all 15 teams have an opportunity to move on to the next stage and compete in the 2019 Spectrum Collaboration Challenge grand finale, which will be held in conjunction with MWC19 Los Angeles, in partnership with CTIA, on October 23, 2019. The six prize-winning teams from the second preliminary event are: Zylinium, a team of independent researchers MarmotE from Vanderbilt University Sprite from Northeastern University Erebus, a team of independent researchers Gator Wings from University of Florida SCATTER from IDLab, an imec research group at Ghent University and University of Antwerp, and Rutgers University "During the second preliminary event we witnessed a technological shift," said Paul Tilghman, the DARPA program manager leading SC2. "For the first time, we saw autonomous collaboration outperform the status quo for spectrum management." Starting in early December, each team's radio participated in 105 matches against competitors in the Colosseum, a massive RF testbed that was developed specifically for SC2. The matches were held in a round-robin fashion where each radio network – working in groups of threes, fours or fives – had multiple opportunities to compete against every other radio design in the competition. Roughly 400 matches were held in total to determine the final team rankings and the prize recipients. During the PE2 matches, teams were put through six different RF scenarios designed to mimic the challenges that collaborative, autonomous radios will face in the real world. These scenarios challenged the radios to collaboratively mitigate interfering with an incumbent radio system, sense and adapt to the spectrum demands of high-traffic environments, handle the data demands of the connected soldier of the future, and beyond. Each scenario was designed to pressure test various elements of the teams' approaches and, in particular, their ability to successfully collaborate with the other radios operating within the same environment. “The six different scenarios were closely aligned to actual situations that our defense and commercial systems face in the field. The Wildfire scenario, for example, replicates the complex communications environment that surrounds an emergency response situation, while the Alleys of Austin scenario was designed to mimic what's needed to help dismounted soldiers navigate and communicate as they sweep through an urban environment. This real-world relevance was critical for us as we want to ensure these technologies can continue to develop after the event and can transition to commercial and/or military applications,” said Tilghman. The sixth scenario of the competition was used to determine the six prize winning teams. This scenario explored the essential question of the SC2 competition: can the top teams' collaborative SC2 radios outperform the status quo of static allocation? Each of the six teams that received awards at PE2 demonstrated that their radio was capable of carrying more wireless applications without the aid of a handcrafted spectrum plan, while simultaneously ensuring four other radio networks operating in the same area had improved performance. In short, each of these six radio networks demonstrated the autonomous future of the spectrum. To aid with decision making, teams applied AI and machine learning technologies in various ways. Some leveraged the current generation of AI technologies like deep learning, while others used more conventional optimization approaches. There were also a few teams that used first wave, rule-based AI technologies. “We're very encouraged by the results we saw at PE2. The teams' radios faced new and unexpected scenarios but were still able to demonstrate smart, collaborative decision making. PE2 showed us that AI and machine learning's application to wireless spectrum management creates a very real opportunity to rethink our current century-old approach,” said Tilghman. The competition now enters its third year and moves closer to the finale, which will be held at one of the country's largest annual technology and telecommunications shows – MWC19 Los Angeles. More than 22,000 attendees from the broad mobile ecosystem and adjacent industry sectors will convene at this three-day event to discuss the current opportunities and future trends shaping the industry. The SC2 championship event will be held on the keynote stage of MWC19 Los Angeles on October 23, 2019. At the conclusion of SC2's finale, three teams will be awarded $2 million, $1 million and $750,000, respectively, for first, second and third place. The real prize, however, will be the promise of a more efficient wireless paradigm in which radio networks autonomously collaborate to determine how the spectrum should be used moment-to-moment, helping to usher in an era of spectrum abundance. For more information about DARPA's Spectrum Collaboration Challenge, please visit: https://spectrumcollaborationchallenge.com/ https://www.darpa.mil/news-events/2018-12-19

  • Defence Minister Bill Blair to visit Latvia and Poland

    13 décembre 2023 | International, Terrestre

    Defence Minister Bill Blair to visit Latvia and Poland

    The Honourable Bill Blair, Minister of National Defence, accompanied by General Wayne Eyre, Chief of the Defence Staff, will visit Latvia from December 15-16, 2023, and then travel to Poland on December 17-18.

Toutes les nouvelles