13 juillet 2023 | International, Terrestre

Italy to buy Leopard combat tanks, upgrade Arietes

Four billion euros would be budgeted for the new buys from 2024.

https://www.defensenews.com/land/2023/07/13/italy-to-buy-leopard-combat-tanks-upgrade-arietes/

Sur le même sujet

  • Secrets of Tempest’s ground-breaking radar revealed

    18 janvier 2021 | International, Aérospatial, C4ISR

    Secrets of Tempest’s ground-breaking radar revealed

    Tom Kington ROME — Radar engineers on the Tempest fighter program have said they expect to break data-processing records. The secret, they explain, is all about miniaturization and going digital. The sixth-generation jet — planned by the U.K., Sweden and Italy and set to enter service after 2030 — will bristle with new technology, from its weaponry and propulsion to a virtual cockpit projected inside the pilot's helmet. But the group set the bar high in October by announcing the fighter's radar would process a quantity of data equivalent to nine hours of high-definition video — or the internet traffic of a medium-sized city — every second. Few details were given to back up the claim, but now U.K.-based engineers with Italian firm Leonardo, who are working on the radar, have shared clues with Defense News. Boosting performance will mean rethinking today's electronically scanned radars, which have grids of small Transmit Receive Modules, or TRM, on the antenna, each generating an individual radar beam which can follow different targets or combine with others to create a larger beam. The TRMs in the array are formed into groups, and the signals received by each group are fed to a receiver which digitalizes the data before passing it to the radar's processor. Due to their size, the receivers must be positioned back from the aircraft's nose and accept the incoming analogue radar signal down coaxial cables, which incurs some data loss before the signal is digitalized. To remedy that, Leonardo is working on miniaturizing the receivers so they can be moved up into the nose and integrated within the antenna, cutting out the need for a coaxial cable. The data emerging from the receiver must still travel to the processor, but by now it is digital and can flow down fiber-optic cables, reducing data loss. “Miniaturized receivers can digitalize the signal within the antenna much earlier in the receive chain,” said chief engineer Tim Bungey. That's one step up from the new state-of-the-art European Common Radar System Mark 2 radar that BAE Systems and Leonardo have signed to deliver for RAF Eurofighters, which will use coaxial cables. “Digitalizing the data closer to the array means more data can be received and transmitted, the data can be more flexibly manipulated, and there is more potential for using the radar as a multi-function sensor such as for data linking and for electronic warfare,” said Bungey. There is also a second advantage to miniaturized receivers: Many more can be installed, meaning each one handles fewer TRMs. “To improve performance and flexibility within the system, a key challenge is to divide the TRMs into more groups containing fewer TRMs, handled by more receivers,” said Bungey. “By achieving that, together with supporting wider bandwidths, you can generate significantly more data, giving greater flexibility for beam steering and multi-function operation,” he added. “We are aiming to increase the number of groups of TRMs, and therefore the number of receivers, beyond what will be offered by the MK2 radar for Eurofighter,” he added. While the radar may push the envelope, Duncan McCrory, Leonardo's Tempest chief engineer, said it would be a mistake to consider it as a stand-alone component. “The MRFS will be integrated within the wider Tempest Mission System, which incorporates a full suite of electronic-warfare and defensive-aids capabilities, EO/IR targeting and situational awareness systems, and a comprehensive communications system.” he said. “The data captured by these systems will be fused to create a rich situational awareness picture for the aircrew,” he added. “This information will also be fused with data received from other aircraft and unmanned systems, with machine learning used to combine and process the overall situational awareness picture for the aircrew. This avoids information overload in the cockpit, enabling the aircrew to quickly absorb data and make decisions based on suitably processed and validated information, and rapidly respond to threats in highly contested environments,” he said. McCrory added that Leonardo demonstrated aspects of human-machine teaming recently in a trial organized with the British Army and the MoD's Defence Science and Technology Laboratory, in which a Wildcat helicopter crew tasked a semi-autonomous UAV provided by Callen-Lenz to gather imagery and feed it back to the cockpit display via datalink. “It is these human-machine teaming principles that we will be building upon for Tempest,” he said. “The MRFS will be integrated within the wider Tempest Mission System, which incorporates a full suite of electronic-warfare and defensive-aids capabilities, EO/IR targeting and situational awareness systems, and a comprehensive communications system.” he said. “The data captured by these systems will be fused to create a rich situational awareness picture for the aircrew,” he added. “This information will also be fused with data received from other aircraft and unmanned systems, with machine learning used to combine and process the overall situational awareness picture for the aircrew. This avoids information overload in the cockpit, enabling the aircrew to quickly absorb data and make decisions based on suitably processed and validated information, and rapidly respond to threats in highly contested environments,” he said. McCrory added that Leonardo demonstrated aspects of human-machine teaming recently in a trial organized with the British Army and the MoD's Defence Science and Technology Laboratory, in which a Wildcat helicopter crew tasked a semi-autonomous UAV provided by Callen-Lenz to gather imagery and feed it back to the cockpit display via datalink. “It is these human-machine teaming principles that we will be building upon for Tempest,” he said. As Tempest development proceeds, McCrory said design of the integrated mission system was proceeding in parallel with the design of the aircraft itself. “We are effectively designing the aircraft from the inside out; by this I mean we are working closely with the MoD to understand future sensing, communications and effects capability requirements, and then working with the Team Tempest partners to ensure the aircraft can accommodate and support the required avionic systems.” Leonardo is working with BAE Systems to ensure the airframe will accommodate sensors, with Rolls Royce to ensure there is sufficient powering and cooling for the systems, and with MBDA, said McCrory, “to give weapons the best available data prior to launch, and to keep them informed after they are released and receive data back from them as they progress towards the target.” https://www.c4isrnet.com/home/2021/01/15/secrets-of-tempests-ground-breaking-radar-revealed/

  • US Space Force Awards L3Harris Technologies $500 Million IDIQ Contract for Anti-Jam Satellite Communications Modem

    24 avril 2020 | International, Aérospatial, C4ISR

    US Space Force Awards L3Harris Technologies $500 Million IDIQ Contract for Anti-Jam Satellite Communications Modem

    Melbourne, Fla. April 23, 2020 - The U.S. Space Force's Space and Missile Systems Center (SMC) has awarded L3Harris Technologies (NYSE:LHX) a five-year, $500 million ceiling, indefinite delivery, indefinite quantity (IDIQ) contract — with an initial delivery order of $30.6 million — for the Air Force and Army Anti-jam Modem (A3M). A3M provides the Department of the Air Force and Army with a secure, wideband, anti-jam satellite communications terminal modem for tactical satellite communication operations. The contract and order were received in the first quarter of 2020. This press release features multimedia. View the full release here: https://www.businesswire.com/news/home/20200423005148/en/ “With the proliferation and growing sophistication of threats in the electromagnetic spectrum, it has become increasingly important to enhance protected communications capabilities for the warfighter,” said Dana Mehnert, President, Communication Systems, L3Harris. “The A3M technology solution enhances the warfighter's ability to communicate critical data by maintaining resilient and secure satellite communications in highly congested and contested environments that include the presence of adversarial jamming.” L3Harris will collaborate with SMC for the design, development, fabrication, integration, certification and testing of Block 1 modems for use in the Air Force Ground Multiband Terminal and the Army Satellite Transportable Terminal. The jam-resistant modems support SMC's Protected Tactical Waveform technology, an anti-jam capability operating on military satellite communication terminals through the Wideband Global Satcom constellation. The L3Harris modems are optimized for high-rate production and are designed to become an integral part of the service's growing Protected Anti-Jam Tactical Service enterprise. Several airborne and ground-based platforms and thousands of terminals across the Department of Defense have been identified as transition candidates to the Protected Tactical Waveform. About L3Harris Technologies L3Harris Technologies is an agile global aerospace and defense technology innovator, delivering end-to-end solutions that meet customers' mission-critical needs. The company provides advanced defense and commercial technologies across air, land, sea, space and cyber domains. L3Harris has approximately $18 billion in annual revenue and 50,000 employees, with customers in 130 countries. L3Harris.com. Forward-Looking Statements This press release contains forward-looking statements that reflect management's current expectations, assumptions and estimates of future performance and economic conditions. Such statements are made in reliance upon the safe harbor provisions of Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934. The company cautions investors that any forward-looking statements are subject to risks and uncertainties that may cause actual results and future trends to differ materially from those matters expressed in or implied by such forward-looking statements. Statements about the value or expected value of orders, contracts or programs and about our system capabilities are forward-looking and involve risks and uncertainties. L3Harris disclaims any intention or obligation to update or revise any forward-looking statements, whether as a result of new information, future events, or otherwise. View source version on businesswire.com: https://www.businesswire.com/news/home/20200423005148/en/

  • US Army to launch offensive cyber capabilities office

    31 août 2022 | International, C4ISR

    US Army to launch offensive cyber capabilities office

    Offensive cyber is defined as '€œoperations intended to project power by the application of force in or through cyberspace,'€ according to NIST.

Toutes les nouvelles