19 mai 2020 | International, Aérospatial, Terrestre

India ups foreign investment, but will stop importing weapons that can be made locally

By: Ashok Sharma, The Associated Press

NEW DELHI — India announced Saturday that global companies can now invest up to 74 percent in the country's defense manufacturing units, up from 49 percent, without requiring any government approval.

Finance Minister Nirmala Sitharaman expressed hope that the new policy will attract foreign companies with high-end technologies to set up their manufacturing bases in India in collaboration with Indian companies.

Sitharaman's announcement came as part of reforms Prime Minister Narendra Modi's government is implementing to revive India's economy, which has been shattered by the coronavirus pandemic.

She also told reporters that India will stop importing weapons that can be made in the country.

“We will notify a list of weapons and platforms for ban on their imports and fix deadlines to do it,” she said, adding that this will improve self-reliance on defense manufacturing.

India introduced up to 49 percent foreign direct investment in defense production in 2016 to attract modern technology in the country. That attracted more than 18.34 billion rupees (U.S. $244 million) until December last year, according to a government statement.

India issues defense-industrial licenses for making tanks, military aircraft, spacecraft and their parts, UAVs, missiles for military purposes, and warships.

India, a major buyer of military equipment, depended largely on the former Soviet Union during the Cold War. But it has been diversifying its purchases by opting for U.S. equipment as well.

During U.S. President Donald Trump's visit to India in February, the two countries signed a deal for India to buy from the U.S. more than $3 billion in advanced military equipment, including helicopters.

https://www.defensenews.com/global/asia-pacific/2020/05/18/india-ups-foreign-investment-but-will-stop-importing-weapons-that-can-be-made-locally

Sur le même sujet

  • FVL: Attack Of The Drones

    11 mars 2020 | International, Aérospatial

    FVL: Attack Of The Drones

    Before manned aircraft enter hostile airspace, three different types of drones – long-range, tactical, and miniaturized – will rip open the seams in the enemy's defenses. By SYDNEY J. FREEDBERG JR. WASHINGTON: As Russian and Chinese-made anti-aircraft weapons become ever more lethal, human pilots are, quite literally, the last thing the Army wants to send into harm's way. Before the Future Attack Reconnaissance Aircraft makes its first probe into enemy airspace, and long before the Future Long-Range Assault Aircraft carries troops deep into hostile territory, a whole array of unmanned aircraft will scout out the enemy defenses, deceive their radars, and strike vital points. In fact, much of this drone technology should be available years before the manned FARA and FLRAA aircraft enter production, which means it can help the Army's existing helicopters survive an increasingly dangerous world. “What we have to do is improve our stand-off and our survivability with the introduction of some technology that will be available prior to the actual FVL [Future Vertical Lift] platform,” said Maj. Gen. David Francis, the commander of the Army's Aviation Center at Fort Rucker, Ala. That includes a new Long-Range Precision Munition – the Army's buying the Israeli Spike missile as an interim solution, but that may not be the permanent one – and a whole family of mini-drones known as Air-Launched Effects (ALE), because they can be launched from the missile racks on both future and existing helicopters. “Those combined, we think, will keep us very, very competitive in that [air defense] environment until we get the increased speed and survivability of our Future Vertical Lift platforms,” Francis told me during an interview. Replacing Shadow & Predator Air-Launched Effects aren't the only drones the Army's Future Vertical Lift task force is developing. The most immediate effort is a competition to replace the aging RQ-7 Shadow, which requires a runway, with a new Future Tactical Unmanned Aerial System (FTUAS), which will take off and land vertically like a helicopter, from wherever soldiers need it. FTUAS also needs to be quieter, so the enemy can't hear it coming as easily, and to require less support equipment, so the Army can more easily deploy it to a war zone more and keep it working in harsh conditions. The service originally selected two companies to provide demonstration aircraft, then decided to double the number to four. This year, samples of all four types are going to operational Army combat brigades, which will try out the different designs and provide feedback that helps the service shapes its final, formal requirement. Three of the contenders – Arcturus UAV's Jump 20, L3 Harris Technologies' FVR-90, and Textron's Aerosonde HQ – share a similar configuration, something we've never seen on a full-size manned aircraft. Each of them has wings and a pusher propeller in back for forward flight, but also quadcopter-style mini-rotors for vertical takeoff and landing. The fourth, equally unconventional design is Martin UAV's V-Bat, a “tail-sitter” that has a single large fan for both vertical and forward flight, changing from one mode to the other by simply turning 90 degrees. Just as FTUAS will replace the Shadow, the Army also wants to replace its long-range Grey Eagle – a variant of the iconic but venerable Predator – with a new Advanced Unmanned Aerial System. The service has revealed very little about what it's looking for in the Advanced UAS, however. Air-Launched Effects & Missiles The most innovative of the Army's future drones, however, is definitely the Air-Launched Effects family, because ALE doesn't replace any existing unmanned aircraft. It's altogether new. As computers simultaneously shrink and grow more powerful, it becomes possible to build drones small enough for a person or another aircraft to carry – and to make them smart enough that they can operate largely autonomously, without a human being to provide constant direction by remote control. Those advances make possible a radically new kind of operation — a single manned mothership launching a flock of mini-drones to scout ahead and provide a host of what the military blandly calls “effects,” from decoying the enemy with fake transmissions to jamming their radars to blowing them up. That combination of new technology and new tactics, in turn, could dramatically improve the chances of Army aviators to survive and prevail in future wars. “When we look at ALE and Long-Range Precision Munition,” said Brig. Gen. Walter Rugen, the Army's FVL director, “what we're finding, in our modeling and our experimentation at Yuma last year, is you really generate that stand-off and overmatch against threats....We can stay outside their weapon engagement zone, and put effects on them.” In the time-honored military framework where you “find, fix, and finish” an enemy, Rugen told me in an interview alongside Gen. Francis, “Air-Launched Effects are what is going to find and fix these threats, and then what the long-range precision munition is going to do is finish that threat.” The Army's budget request for fiscal year 2021 includes $152 million to field Israeli armsmaker Rafael's Spike NLOS (Non-Line Of Sight) missile to three Combat Aviation Brigades. “We're currently projecting that it would be an FY'22 initial [operational capability,” Rugen told me. “But that's just our initial increment of the Long-Range Precision Munition. We will follow that on with more detailed requirements to fix some of the challenges that we see already with Spike [and] improve upon that capability.” To make all this work, however, the Army needs more than new missiles and mini-drones. It also needs a digital communications system that can rapidly pass data between manned and unmanned aircraft, not through slow and error-prone humans, but near-instantly from machine to machine. The electronic architecture to make that possible is the subject of the next story in this series. https://breakingdefense.com/2020/03/fvl-attack-of-the-drones

  • Guam’s air defense should learn lessons from Japan’s Aegis Ashore

    31 juillet 2020 | International, Aérospatial

    Guam’s air defense should learn lessons from Japan’s Aegis Ashore

    By: Timothy A. Walton and Bryan Clark The head of U.S. Indo-Pacific Command said last week his top priority is establishing an Aegis Ashore system on Guam by 2026. New air defenses will help protect U.S. citizens and forces in Guam; but as Japan's government found, Aegis Ashore may not be the best option to protect military and civilian targets from growing and improving Chinese and North Korean missile threats. Guam is pivotal to U.S. and allied military posture in the Western Pacific. Home to Andersen Air Force Base and Apra Harbor, it is far enough from adversaries like China and North Korea to negate the threat from more numerous short-range missiles but close enough to support air and naval operations throughout the Philippine Sea and South and East China seas. Although the current Terminal High Altitude Area Defense battery on Guam can defend against some ballistic missiles, its single AN/TPY-2 radar is vulnerable and cannot provide 360-degree coverage. Moreover, THAAD's focus on high altitudes makes it a poor fit to defeat lower-flying aircraft or cruise missiles that would likely be used by China's military against Guam. The island needs a new air defense architecture. Aegis Ashore is highly capable, but has its own limitations. Designed primarily to counter small numbers of ballistic missiles, its fixed missile magazine and radar would be vulnerable to attack and would fall short against the bombardment possible from China. Instead of installing one or more Aegis Ashore systems on Guam, a more effective air and missile defense architecture would combine the latest version of the Aegis Combat System with a disaggregated system of existing sensors, effectors, and command-and-control nodes. A distributed architecture would also be scalable, allowing air and missile defenses to also protect U.S. citizens and forces operating in the Northern Marianas. Guam's geography enables longer-range sensing than would be possible from a ship or a single Aegis Ashore radar. Fixed, relocatable and mobile radio frequency sensors should be positioned around the island's perimeter, such as compact versions of SPY-6 or Lower Tier Air and Missile Defense Sensor radars and the passive Army Long-Range Persistent Surveillance system. During periods of heightened tension, passive and active radio frequency and electro-optical/infrared sensors could also be deployed on unmanned aircraft and stratospheric balloons to monitor over-the-horizon threats. This mixed architecture would provide better collective coverage and be more difficult to defeat compared to one or two fixed Aegis Ashore deckhouses. To shoot down enemy missiles and aircraft, the architecture should field mobile, containerized launchers for long-range interceptors like the SM-6 and SM-3 rather than Aegis Ashore's finite and targetable in-ground vertical launch magazines. They should be complemented by medium- to short-range engagement systems to protect high-value targets such as the Patriot, the National Advanced Surface-to-Air Missile System or the Army's planned Indirect Fire Protection Capability, as well as non-kinetic defenses such as high-powered microwave weapons and electronic warfare systems that could damage or confuse the guidance systems on incoming missiles. Today, destroyers patrol the waters around Guam to provide ballistic missile defense capacity beyond that available with THAAD. A new distributed architecture would place more capacity ashore to free surface combatants from missile defense duty. In a crisis or conflict, the architecture could add capacity with surface action groups and combat air patrols capable of intercepting threats at longer ranges. Instead of Aegis Ashore's large, single C2 node, a distributed architecture would virtualize the Aegis Combat System to allow multiple facilities or mobile vehicles to serve as miniature air operations centers. The mobility of sensors, effectors and C2 nodes in this architecture would enable the employment of camouflage, concealment and deception, including decoys, to complicate enemy targeting and increase the number of weapons needed to ensure a successful attack. INDOPACOM's plan for implementing new Guam air defenses should also apply lessons from Japan's aborted Aegis Ashore program, whose accelerated timeline contributed to the selection of the least expensive and technically risky option — two fixed Aegis Ashore systems — and the discounting of alternatives. Adm. Phil Davidson's 2026 goal of improving Guam's defenses faces a similar risk. Bound by an iron triangle, Guam's air and missile defenses can be good, fast or cheap — but not all three. If 2026 is held as a rigid constraint, the only solution able to meet the schedule and requirements may be the familiar, and ineffective, fixed Aegis Ashore architecture. Compared to one or two Aegis Ashore sites, a distributed architecture may require slightly more time to develop or funds to field. But a phased approach could introduce new systems as funding becomes available and allow expanding the system's capability to meet the evolving threat. For example, SPY-6 radars, C2 bunkers and composite THAAD-Patriot-NASAMS batteries could be fielded before 2026, quickly followed by the introduction of mobile assets. Guam and the Northern Marianas are essential to U.S. strategy and operations in the Western Pacific. Their defenses have long been ignored, and Adm. Davidson should be lauded for charting a path forward. A disaggregated architecture, however, will be more likely to realize INDOPACOM's vision of resilient and scalable air and missile defense. Timothy A. Walton is a fellow at the Hudson Institute's Center for Defense Concepts and Technology, where Bryan Clark is a senior fellow. https://www.defensenews.com/opinion/commentary/2020/07/30/guams-air-defense-should-learn-lessons-from-japans-aegis-ashore/

  • Artificial intelligence is critical to accelerated decision making

    26 octobre 2022 | International, C4ISR

    Artificial intelligence is critical to accelerated decision making

    Without clean, easy-to-understand data, AI cannot provide effective analysis for quick and correct decisions.

Toutes les nouvelles