19 mai 2020 | International, Aérospatial, Naval, Terrestre, C4ISR, Sécurité

Huge Deficit = Defense Budget Cuts? Maybe Not

The congressional calendar and strategic inertia may come together to keep the defense budget relatively high. The calendar helps because the fiscal 2021 defense budget will likely be passed while Congress is in a free-spending mood.

By

The current Washington consensus sees deep defense budget cuts in the face of soaring deficits driven by the emergency legislation to stabilize the American economy as it reels from the effects of the COVID-19 pandemic.

It may be wrong. The congressional calendar and strategic inertia may come together to keep the defense budget relatively high. The calendar helps because the fiscal 2021 defense budget will likely be passed while Congress is in a free-spending mood. The next administration — Republican or Democratic — will develop budgets beyond that, but the constraints of long-standing strategy will prevent major changes to force structure and acquisition that would drive deep budget cuts.

The Challenge

The conventional narrative holds that the defense budget will be squeezed as the debt level rises, and the public focuses inward on rebuilding the country's health and economic position. These are reasonable concerns.

The deficit in fiscal 2020, initially projected to be about one trillion dollars ― itself getting into record territory without emergency spending― is now projected to be $3.7 trillion, and Congress is not finished spending. Debt held by the public will rise to 101 percent of GDP, a level not seen since World War II. Even if the world is willing to take US debt, rising interest payments will squeeze the rest of the budget.

Simultaneously, the electorate is likely to focus inward. The pandemic is already the leading popular concern, not surprisingly. The economic devastation caused by restrictions on normal commercial activities has produced the greatest downturn since the Great Depression.

It would be reasonable to put these factors together and project a substantially reduced defense budget. However, the congressional calendar and the inertia of a long-held strategy will likely mitigate any downturn.

The Calendar

The calendar will help because Congress is likely to pass the 2021 appropriation this fall, when the government will still be operating under emergency conditions. Congress has already passed four bills for pandemic response and economic stimulus and is developing another in the multi-trillion range. There are a few voices for fiscal constraint, but they are overwhelmed by a sentiment to “do more.”

Indeed, some lawmakers and commentators are proposing increases to the defense budget to stimulate the economy, enhance deterrence of China, or protect the defense industrial base. Adam Smith, chairman of the House Armed Services Committee, has indicated his reluctance to do more than protect the industrial base, but a future stimulus bill could include such enhancements as part of a bipartisan deal.

Finally, last year's bipartisan budget agreement set levels for defense and domestic spending in fiscal 2021. Undoing that agreement would be a major lift, requiring a bipartisan consensus that does not seem to be occurring. Even if the Democratic left wanted to make such cuts, defense hawks in the House and Senate could block them.

Thus, in the near-term proposals for enhancements seem to be offsetting thoughts about cuts. As both the House and Senate consider their authorization acts, they seem to be aiming at roughly the level of the president's proposal and the bipartisan budget agreement.

Strategic Inertia

The United States has had some variation of the same national security strategy since the end of the Second World War (or perhaps more accurately, since the Korean War and publication of NSC 68, which enshrined a long term competition with the Soviet Union). That strategy involves global engagement, forward-deployed forces, alliances to offset global competitors, and commitment to maintaining an international system of free trade, human rights and secure borders. Scholars can argue about the details and how well the United States has implemented such a strategy, but the major elements have been constant.

President Trump has chafed at many of these elements but has generally gone along, however reluctantly. One would expect such reluctant continuity in a second Trump administration, should that occur

One would also expect strategic continuity in a Biden administration. Biden was, after all, vice president during the Obama administration, which, after the shocks of 2014, laid out a strategy of confronting five threats: Russia, China, North Korea, Iran, and terrorism. One would expect Biden to implement something like that strategy if he were in office. That does not mean that a Biden administration would do everything a Trump administration would do. The left-wing of the Democratic party would push some level of cuts, perhaps 5 percent, and take aim particularly at nuclear modernization, foreign arms sales, and Middle East conflicts.

But this longstanding strategy of global engagement will put a floor on defense cuts. Remaining engaged with NATO, supporting our Asian allies like Japan and South Korea, and maintaining some presence in the Middle East, even if scaled back, takes a lot of forces. These need to be at a relatively high level of readiness to deploy globally and be credible. The all-volunteer force needs to maintain compensation and benefits at a sufficient level to compete for labor in a market economy. Competing with China and Russia requires investment in a wide variety of high technology―and costly―new systems, as well as the R&D foundation to support these innovations.

Other strategies are certainly possible. Members of the Democratic left and Republican right, as well as some elements of the academic and think tank community, have proposed strategies of “restraint”, whereby the United States would significantly scale back overseas engagements. Such strategic change would produce a substantial cut in the defense budget. However, neither major candidate has supported such a change, and the national security policy community (aka “the blob”) is adamantly opposed.

Despite this relatively optimistic assessment, the future is still cloudy. The president's budget proposal forecasts a level budget in constant dollars. That meant that the defense buildup was over, even if Republicans continued in office. Such budgets do not come close to the 3 to 5 percent real growth that defense officials had talked about to implement the National Defense strategy and would entail choices between readiness, force structure and modernization.

A Democratic administration, with a notional 5 percent cut in the defense budget, would not constitute the deep cut that a Sanders or Warren administration might have entailed, but the $35 billion that a 5 percent cut would entail is still a lot of money. Forces would get smaller, likely wiping out all the recent force expansion, and new programs would be delayed.

Bottom line: Defense may not be heading into a budget hurricane, but it is not heading into sunlight either. It faces the friction that occurs when expensive plans collide with constrained resources.

Mark Cancian, a member of the Breaking Defense Board of Contributors, was a Marine colonel and senior official at the Office of Management and Budget before he joined CSIS.

https://breakingdefense.com/2020/05/huge-deficit-defense-budget-cuts-maybe-not/

Sur le même sujet

  • The US Army sees a future of robots and AI. But what if budget cuts and leadership changes get in the way?

    11 janvier 2022 | International, Terrestre, C4ISR

    The US Army sees a future of robots and AI. But what if budget cuts and leadership changes get in the way?

    Four years into Army Futures Command, experts say the effort is on track, but they warn that leadership changes, potential budget cuts and a few contracting and technological hiccups could put it at risk.

  • Navy Use of Laser Scanning Already Showing Big Savings; Summit This Month to Refine Plans

    3 juillet 2018 | International, Naval

    Navy Use of Laser Scanning Already Showing Big Savings; Summit This Month to Refine Plans

    By: Megan Eckstein A $50,000 investment in laser scanning equipment saved the Navy nearly $2 million during the planning effort for USS George Washington‘s (CVN-73) refueling and complex overhaul. A small team of engineers with a LIDAR system did the work of the usual 20-person team, inspecting the nooks and crannies of the carrier to inform the overhaul plans. Now the Navy is looking to leverage that win and expand its use of laser scanners to not only cut down costs for aircraft carrier maintenance planning and execution but also tie into virtual reality trainers and other cutting-edge technologies. In the case of the George Washington RCOH, a team of two or three engineers from Newport News Shipbuilding flew out to the forward-deployed carrier in Japan with a LIDAR scanner atop a tripod. As the tool slowly spins around it gathers millions of data points depicting how far away objects are from the scanner. The resulting 3D point cloud shows the precise location of items in the room – not where a server rack was supposed to be according to the blueprints, for example, but where it actually is. Capt. John Markowicz, the in-service carrier program manager, told USNI News in an interview that the $1.8-million savings from that one ship check effort was about 15 percent of the total cost of that portion of the RCOH planning, and that his office was already employing the laser scanning technology ahead of the next RCOH for USS John C. Stennis (CVN-74). He said it was too early to guess a percent savings the laser scanning will yield this time around, but that it would likely be on par or better than with George Washingtonbecause Newport News Shipbuilding has continued to invest in the laser scanners and learning how to best leverage them. Markowicz said the tripod-mounted scanners cost about $3,600 each, and smaller handheld ones for scanning small spaces cost about $600. The actual scanning service can cost between $50 and $250 an hour, and post-production work can cost $100 to $300 and hour. USNI News visited Newport News Shipbuilding last October, and during a lunchtime meeting a company engineer scanned the whole conference room and produced a point cloud model of the room within about 30 minutes, as an example of how quickly the scanners can work. Once those point cloud models are created, the Navy and Newport News have already found several uses during the RCOH and other carrier maintenance planning and execution phases. First, for the actual planning, the point cloud models can offer some spatial perspective that flat blueprints can't, as well as an updated “as-is” assessment of the space instead of the “as-designed” view the blueprints contain. Mark Bilinski, a scientist at the Space and Naval Warfare Systems Center Pacific and its Battlespace Exploitation of Mixed Reality (BEMR) Lab, and his team are working on laser scanning technology and ways to leverage the 3D point cloud product. He showed off some of the technologies to USNI News during the U.S. Naval Institute and AFCEA's WEST 2018 conference in San Diego in February. During a panel presentation at WEST, he said that sometimes the 3D scans just show discrepancies between where an item was supposed to be installed versus where it actually was installed. However, he ran into a case where the blueprints depicted an escape hatch of a certain size, but it was larger in reality; in that case, a planner might have thought there was room to install something nearby, when in reality putting the equipment there would actually partially block the hatch and cause a safety issue. In another case, the blueprints showed a hatch as being much larger than it actually is, and so the planner might have thought the space was unusable. “That's an opportunity cost because that might be some space that you could use for an install that you don't think is available to you,” Bilinski said. Once the planning is done and execution is set to begin, Markowicz said the 3D models, unlike 2D blueprints, can help identify interferences and obstructions, help find the best route down narrow passageways for bringing in bulky equipment to install, aid in laying in pipes and wires and more. “That is valuable, it cuts down time in the shipyard,” which ultimately cuts down cost and allows the next carrier to come in for maintenance quicker. Norfolk Naval Shipyard and Puget Sound Naval Shipyard and Intermediate Maintenance Facility are beginning to embrace this technology, which could spread to the other two public shipyards to support submarine maintenance activities too, and Newport News Shipbuilding is “all in” on the private sector side, he said. Markowicz noted that taking the scans and making mockups in a 3D digital environment can not only save time on major efforts like finding the best routing for piping, but can also help with little things – for instance, there was a case of trying to install a laptop in a phone booth area, but it turned out that the laptop couldn't open all the way without hitting the phone. “We stumble upon these things sometimes a little late in the design process, or actually the install process. It's not as efficient as it can be,” he said. Every time a maintenance or modernization activity takes place, the scan would become slightly outdated, but Markowicz said the idea would be to rescan periodically and maintain records of all the scans as “selected records” that accompany the 2D drawings for the Nimitz class today. “Once we have this digitally, I think that's pretty useful. We can share it with multiple activities and have the documentation for future use and future availability planning,” he said. Bilinski also noted the ways laser scans could help during a major maintenance period, when multiple program offices are trying to get their own equipment in and don't always have a great way to coordinate. In many availabilities, Bilinski said, someone goes to install a piece of equipment in a space, only to find that that space is taken. Instead, he will just take the next closest space that meets his need. Then the next person comes in to use that space and finds that it was just taken, causing a cascading effect. If everyone involved in the maintenance period were working off a shared digital plan that could be updated in real time as systems were installed, conflicts could be identified sooner and plans could be rearranged as needed without any on-ship confusion. “If you have that collaborative environment where everyone is planning off of the scan data, the installer can see not only that this space is physically available, but hey, it's also available in the planning environment; no one is planning to put anything there. Or, maybe someone is planning to put something there but you've got to put your equipment somewhere, so you put it there, but you at least know who to notify so that we can start fixing this problem earlier than discovering it when the next program office shows up to install their equipment,” he said. Virtual reality application Virtual and augmented reality tools are already changing how ships are built, with Newport News Shipbuilding telling USNI News during the October visit that the use of VR goggles while laying pipes and cables for the future John F. Kennedy (CVN-79) has cut the required man-hours in half. Newport News is also sending its shipbuilders out with tablets that can use VR to show what's on the other side of a wall or where to cut a hole into a wall, and can also include how-to videos to show step-by-step how to do the day's tasks. Markowicz said there would likely be less applicability for that technology on the ship repair and maintenance side compared to the ship construction side, but he hopes to explore how the public shipyards can use VR and tablets to drive efficiency up and cost down. Where VR and laser scanning could converge, though, is on training. Because each ship has a different set of navigation and steering systems, surface search radars and other systems, allowing a sailor to train on his or her own ship is more useful than training on a generic ship. Markowicz said his office is working with Bilinski's BEMR Lab to create ship-specific VR training tools for while ships are in maintenance. They scanned destroyer USS John S. McCain (DDG-56) after its collision last year, and while the ship undergoes a lengthy repair process, sailors could use VR goggles to practice maintenance and repair work on McCain's specific configuration without having to actually be on the destroyer. The BEMR lab already has Virtual Eqiupment Environment (V2E) tools that let the user walk into a room, spot a server rack, for example, and begin to take apart and put back together the server rack. Similarly, when a carrier is in RCOH for four years, sailors are often times flown around the world to get training time on other carriers. Though the ship is safe for them to be in while in RCOH, the systems are all ripped out. If the Navy had scans of the last carrier that came out of RCOH and could insert a finished product view into VR goggles, sailors could train on their own ship at Newport News while the RCOH goes on around them. “We've got to find creative ways to do training. Normally they leave ... and they go out to the fleet and ride another ship and get their training that way. But a lieutenant had the idea of, okay, you can go up to pri-fly (primary flight control), any everything's ripped apart but you can put on these goggles and see what your space is going to look like 48 months from now ... and visualize it all and stand there in your space without having to go to another ship,” Markowicz said. “I definitely see a partnership with the BEMR Lab and laying that out for training for ship's force, closing that gap in readiness. Because I was part of the Carl Vinson (CVN-70) overhaul, and our skills atrophied as we stayed in overhaul for that length of time. So we have to find opportunities to sharpen our skills.” Bilinski said there could be other uses for combining a current ship scan and VR goggles or tablets. For example, if scans of ship spaces were taken correctly, they could be woven together to create essentially a Google Maps of sorts. New sailors could use it to learn their way around the ship. Or, more importantly, “let's say a fire breaks out on a ship and you need to go into a compartment and fight that fire – it's going to be smoke-filled, it can be dark, you may not have ever been in that space, there could be plenty of places where you can fall, you could twist your ankle, you could bump into equipment in the space. If you were to understand where you were, you could look through that wall and see what the last as-is condition of the ship was and sort of get an idea of what you're getting into before you go into that space,” then firefighting or other emergency response efforts could be done potentially more safely and quickly. Policy and technical barriers Much like other emerging technologies, Markowicz said those trying to implement laser scanning are facing the usual set of challenges: how does the Navy balance the need to ensure technical rigor while also not being too proscriptive and excluding potential scanners or data formats that could be useful? What legal and ethical concerns need to be addressed through policy changes? “That's the rub right now,” Markowicz said. “You see us working with Newport News. I'm sure there's other pockets within NAVSEA that are working on it. But alignment across the whole NAVSEA equities hasn't happened yet. So where we are successful at NAVSEA (Naval Sea Systems Command) is where we have a singular tech warrant holder who owns turbines or fire protection or what have you. So we're really successful in employing that model across NAVSEA. I see a vision someday where you have a tech warrant holder for a laser scanner that's able to establish standards, policy, requirements to go forward and articulate that to industry.” His team is hosting a laser scanning summit later this month to identify barriers and develop courses of action to begin to address them – everything from how many dots per inch are needed for the scan to be useful, to, are there any engineering decisions that cannot or should not be made based on laser scanning and 3D point cloud modeling work. Markowicz suggested that anything related to the nuclear propulsion system is going to require much more technical rigor than other parts of the ship, but he said he still sees great potential for savings with laser scanners beyond what the Navy and Newport News Shipbuilding are doing today. “I think across the board we will save money, and in that way the leadership is behind it if it helps us be more efficient,” he said. Back when the Navy and Newport News first did the George Washington ship check, then-Navy acquisition chief Sean Stackley's message to Markowicz was, “I absolutely needed to make it my mission to leverage new technologies and be more efficient in the repair business,” the captain said, and he believes this is a prime example of how to do that. To be successful enterprise-wide, he said, “I think the real key is setting the standards, which will provide a framework where contractors and Navy can plug into. To get there, we need to provide technical leadership, host conferences ... flush out all the issues. At least create a standard so that we can contract and have deliverables. One software package or one laser scanner, I don't think we need to be that proscriptive. I think we set a standard for industry, like an ISO standard, and people will come around to it.” He likened the point cloud image to a PDF that could be opened on a Mac or a PC and is readily sharable among users, and said it would be important that, regardless of what scanner is used, the output has these qualities too. He suggested that some scans would need to be precise while others could forsake precision for speed if the user just needed a general idea of how a room is laid out, and all those types of issues would eventually become written out and standardized. https://news.usni.org/2018/07/02/navy-use-of-laser-scanning-already-showing-big-savings-summit-this-month-to-refine-plans

  • DARPA wants to arm ethical hackers with AI

    30 avril 2018 | International, C4ISR

    DARPA wants to arm ethical hackers with AI

    By: Brandon Knapp The Defense Advanced Research Projects Agency (DARPA) wants to leverage human-artificial intelligence teaming to accelerate the military's cyber vulnerability detection, according to agency documents. The task of securing the Pentagon's diverse networks, which support nearly every function of the military's operations, presents a nightmare for defense officials. The current time-intensive and costly process involves extensively trained hackers using specialized software suites to scour the networks in search of vulnerabilities that could potentially be exploited, but the scarcity of expert hackers makes detecting cyberthreats a challenge for the Defense Department. DARPA's Computers and Humans Exploring Software Security (CHESS) program seeks to bolster existing cyber defenders with a new tool that would render much of the current toolkit ancient history: artificial intelligence. The program aims to incorporate automation into the software analysis and vulnerability discovery process by enabling humans and computers to reason collaboratively. If successful, the program could enhance existing hacking techniques and greatly expand the number of personnel capable of ethically hacking DoD systems. To achieve its goal, DARPA will solicit proposals from industry across five technical areas, including developing tools that mimic the processes used by expert hackers and ultimately transitioning a final solution to the government. “Through CHESS, we're looking to gather, understand and convert the expertise of human hackers into automated analysis techniques that are more accessible to a broader range of technologists,” the DARPA program description reads. “By allowing more individuals to contribute to the process, we're creating a way to scale vulnerability detection well beyond its current limits.” While DARPA sees artificial intelligence as an important tool for enhancing cybersecurity efforts, officials emphasize the essential role humans play in the collaborative process. “Humans have world knowledge, as well as semantic and contextual understanding that is beyond the reach of automated program analysis alone,” said Dustin Fraze, the I2O program manager leading CHESS. “These information gaps inhibit machine understanding for many classes of software vulnerabilities. Properly communicated human insights can fill these information gaps and enable expert hacker-level vulnerability analysis at machine speeds.” The CHESS program will span three phases lasting a total of 42 months. Each phase will focus on increasing the complexity of an application the CHESS system is able to analyze effectively. https://www.c4isrnet.com/it-networks/2018/04/27/darpa-wants-to-arm-ethical-hackers-with-ai/

Toutes les nouvelles