8 septembre 2020 | International, Aérospatial

GA-ASI Demonstrates AI Driven Targeting Computer with AFRL’s Agile Condor Pod

General Atomics Aeronautical Systems, Inc., with the support of SRC Inc., successfully integrated and flew the Air Force Research Laboratory's (AFRL) Agile Condor Pod on an MQ-9 Remotely Piloted Aircraft at GA-ASI's Flight Test and Training Center in Grand Forks, North Dakota

The Agile Condor Pod provides on-board high-speed computer processing coupled with machine learning algorithms to detect, correlate, identify, and track targets of interest. With this capability, the MQ-9 is able to identify objects autonomously utilizing its on-board Electro-optical/Infrared (EO/IR) sensor and GA-ASI's Lynx Synthetic Aperture Radar (SAR).

Defense contractor SRC, Inc. developed the Agile Condor system for the Air Force Research Laboratory (AFRL), delivering the first pod in 2016. It's not clear whether the Air Force conducted any flight testing of the system on other platforms before hiring General Atomics to integrate it onto the Reaper in 2019.

The service had previously said that it expected to take the initial pod aloft in some fashion before the end of 2016.

High-powered computing at the edge enables autonomous target detection, identification and nomination at extended ranges and on-board processing reduces communication bandwidth requirements to share target information with other platforms. This is an important step towards greater automation, autonomous target detection, and rapid decision-making. GA-ASI will continue to work with AFRL to refine the capability and foster its transition to operational constructs that will improve warfighters' ability to operate in contested or denied environments.

“Sensors have rapidly increased in fidelity, and are now able to collect vast quantities of data, which must be analyzed promptly to provide mission critical information,” an SRC white paper on Agile Condor from 2018 explains. “Stored data [physically on a drone] ... creates an unacceptable latency between data collection and analysis, as operators must wait for the RPA [remotely piloted aircraft] to return to base to review time sensitive data.”

“In-mission data transfers, by contrast, can provide data more quickly, but this method requires more power and available bandwidth to send data,” the white paper continues. “Bandwidth limits result in slower downloads of large data files, a clogged communications link and increased latency that could allow potential changes in intel between data collection and analysis. The quantities of data being collected are also so vast, that analysts are unable to fully review the data received to ensure actionable information is obtained.”

This is all particularly true for drones equipped with wide-area persistent surveillance systems, such as the Air Force's Gorgon Stare system, which you can read about in more detail here, that grab immense amounts of imagery that can be overwhelming for sensor operators and intelligence analysts to scour through.

Agile Condor is designed to parse through the sensor data a drone collects first, spotting and classifying objects of interest and then highlighting them for operators back at a control center or personnel receiving information at other remote locations for further analysis. Agile Condor would simply discard “empty” imagery and other data that shows nothing it deems useful, not even bothering to forward that on.

“This selective ‘detect and notify' process frees up bandwidth and increases transfer speeds, while reducing latency between data collection and analysis,” SRC's 2018 white paper says. “Real time pre-processing of data with the Agile Condor system also ensures that all data collected is reviewed quickly, increasing the speed and effectiveness with which operators are notified of actionable information.”

At least at present, the general idea is still to have a human operator in the ‘kill chain' making decisions about how to act on such information, including whether or not to initiate a lethal strike. The Air Force has been emphatic about ensuring that there will be an actual person in the loop at all times, no matter how autonomous a drone or other unmanned vehicle may be in the future.

An Air Force Research Laboratory briefing slide showing a concept of operations for how a drone might use Agile Condor to sense and avoid threats autonomously

Still, developments such as Agile Condor will significantly reduce the amount of necessary human interaction in various parts of the targeting process, as well as general intelligence collection and initial analysis, and potentially much more, as time goes on. It could also fuse various forms of sensor data and other available intelligence together to specifically weight possible areas of interest over others and prioritize certain targets. The Air Force has also said that this system could use these capabilities to enable drones to navigate and detect and avoid potential threats automatically, including at times when its links to a control center or the GPS satellite navigation system are disrupted or blocked entirely.

Sources: Press Release; The Drive

https://www.uasvision.com/2020/09/07/ga-asi-demonstrates-ai-driven-targeting-computer-with-afrls-agile-condor-pod/

Sur le même sujet

  • US Air Force secretary wants ‘another shot’ at adaptive F-35 engine

    16 mars 2023 | International, Aérospatial

    US Air Force secretary wants ‘another shot’ at adaptive F-35 engine

    The service's top civilian is having second thoughts about a recent choice for the Joint Strike Fighter.

  • European Hypersonic Cruise Passenger Study Set For New Tests

    2 août 2019 | International, Aérospatial

    European Hypersonic Cruise Passenger Study Set For New Tests

    By Guy Norris A team of European hypersonic researchers are preparing for wind tunnel tests of a Mach 8 concept that is designed to prove technologies for the development of future ultra-long-range, high-speed commercial vehicles and air-breathing space launch systems. Funded under Europe's Horizon 2020 research and innovation program, Stratofly (Stratospheric Flying Opportunities for High-speed Propulsion Concepts) is targeted at fostering hypersonic capabilities for a 300-seat passenger vehicle cruising above 30 km (19 mi.) to TRL (technology readiness level) 6 by 2035. The project builds on the Lapcat waverider concept developed under earlier programs by the European Space Agency/European Space Research and Technology Center. Using the 310-ft.-long Lapcat II MR2.4 version as a reference vehicle, the 30-month Stratofly effort is focused on classic hypersonic technology challenges such as propulsion integration, hot structures and thermal management. In addition, with environmental concerns at the forefront in Europe, the project also includes sustainability considerations such as fuel-burn efficiency, noise and emissions reductions, as well as operational issues such as life-cycle costs, safety and certification. Coordinated by The Polytechnic University of Turin, Italy, the project team believes that sustainable hypersonic travel is feasible through the use of liquid hydrogen fuel and new trajectories that would enable flights from Europe to Australia in 3 hr. Specific targets include 75-100% CO2 reductions per passenger kilometer and 90% reductions in nitrous oxide (NOx) compared to current long-range transport aircraft. A version of the vehicle could also be adapted into the first stage of a two-stage-to-orbit space launch system, says the group. Other members of the 10-strong consortium include the von Karman Institute for Fluid Dynamics in Belgium, which is focused on propulsion and noise; the Netherlands Aerospace Center, NLR, which is also part of the noise study; and CIRA, the Italian aerospace research center, which is conducting high-speed flow analysis. Propulsion systems and climate impact input is provided by Germany's DLR research organization, while ONERA, the French aerospace research center, is focused on emissions as well as plasma-assisted combustion in the vehicle's combined-cycle propulsion system. Sweden's FOI defense research agency is also part of the plasma combustion study. The French National Center for Scientific Research is also evaluating the vehicle's potential climate impact, particularly in areas such as the effects of water droplets from the exhaust in the upper atmosphere. Studies of the overall business plan, human factors and hypersonic traffic management are being conducted by the Hamburg University of Technology, while the Spain-based Civil Engineering Foundation of Galicia is focused on structural analysis and optimization. Like the original Lapcat design, the Stratofly MR3 waverider configuration is dominated by a large elliptical inlet and an integrated nozzle aft located between two canted tail fins. For takeoff and acceleration up to Mach 4.5, the vehicle is powered by six air turbo ramjets (ATR, also known as air turbo rockets) in two bays of three, each fed by secondary inlets in the primary intake. Above this speed, sliding ramps cover the ATR inlets as the vehicle accelerates and transitions to a dual-mode ramjet/scramjet (DMR) for the next phase of the flight. The DMR is housed in the dorsal section, nested between the ATR ramjets, and is designed to operate in ramjet mode to above Mach 5 and scramjet mode up to Mach 8. The scramjet will incorporate a plasma-assisted combustion system to maintain the stability of the flame front and prevent the potential for flameouts. Tests of the plasma system in a combustor will take place later this year at ONERA, where supersonic combustion testing also took place for Lapcat. The tests will be conducted in November-December at ONERA's ATD5 facility and will focus on inlet conditions at Mach 3.7. Also planned for later this year is a test of the full vehicle in the high-enthalpy wind tunnel at DLR's Gottingen research facility. Testing at DLR will run through September 2020 and is expected to target similar free-stream conditions as those tested on Lapcat II—around Mach 7.8. The work will assess aerothermodynamic characteristics and be used to validate the results of earlier computational fluid dynamics analysis of the MR3 design, which incorporates external and internal differences against the reference vehicle. “We elevated the canard [a retractable feature for lower-speed flight] and redesigned the vertical tails,” says Davide Ferretto, a research assistant on the Stratofly team from The Polytechnic University of Turin. “We also redesigned the leading-edge radius of the inlet for increased efficiency as it feeds both propulsion systems.” As part of the redesign, the enclosed passenger compartment, which was divided into two sections running along each side of the vehicle, has been combined into a single cabin in the lower lobe of the fuselage. https://aviationweek.com/propulsion/european-hypersonic-cruise-passenger-study-set-new-tests

  • Simulation sandbox can speed development of uncrewed military vehicles

    12 septembre 2022 | International, Terrestre

    Simulation sandbox can speed development of uncrewed military vehicles

    AI-based simulations can shorten testing periods by running thousands of different scenarios simultaneously.

Toutes les nouvelles