12 novembre 2023 | International, Aérospatial

First Boeing T-7A Red Hawk Arrives at Edwards Air Force Base to Begin U.S. Air Force Flight Testing

The T-7A Red Hawk made stops at Air Force bases in Oklahoma, New Mexico and Arizona to refuel and offer base employees a firsthand look at the new advanced trainer...

https://www.epicos.com/article/780415/first-boeing-t-7a-red-hawk-arrives-edwards-air-force-base-begin-us-air-force-flight

Sur le même sujet

  • Indian government clears $6.5 billion deal for homemade Tejas fighter jets

    15 janvier 2021 | International, Aérospatial

    Indian government clears $6.5 billion deal for homemade Tejas fighter jets

    By: Vivek Raghuvanshi NEW DELHI — India on Wednesday cleared the country's largest-ever indigenous defense deal worth $6.5 billion for the purchase of 83 LCA MK1A Tejas light combat aircraft. The deal was approved by the government's apex security body, the Cabinet Committee on Security, which is chaired by Prime Minister Narendra Modi. The deal will see state-owned Hindustan Aeronautics Limited manufacture 73 LCA MK1A Tejas fighter versions and 10 trainers versions, the Ministry of Defence said. “This deal will be a game-changer for self-reliance in Indian defence manufacturing. It would act as a catalyst for transforming the domestic aerospace ecosystem. The LCA-Tejas is going to be the backbone of the [Indian Air Force] fighter fleet in the years to come,” Defence Minister Rajnath Singh said. “Under the Atmanirbhar Bharat Abhiyaan [Self-Reliant India Initiative], India is continuously growing in its power to indigenously design, develop and manufacture advanced cutting edge technologies and systems in the defence sector,” the MoD said in a statement. “About 500 Indian companies including MSMEs [micro, small and medium enterprises] in the design and manufacturing sectors will be working with HAL in this procurement. The programme would act as a catalyst for transforming the Indian aerospace manufacturing ecosystem into a vibrant self-sustaining ecosystem.” The MoD said this deal is the first “Buy (Indian-Indigenously Designed, Developed and Manufactured)” category procurement of combat aircraft with indigenous content of at least 50 percent — and it's expected that will increase to 60 percent by the end of the program. HAL Chairman Ramakrishnan Madhavan said the Tejas program will involve the highest level of local work in comparison to any Indian program of this scale. According to a senior HAL executive, the private defense companies that will support assembly include Larsen & Toubro for the wings, Dynamatic Technologies for the front fuselage, Alpha Tokal for the rear fuselage, and VEM Technologies for the center fuselage. The LCA MK1A fighters will have new capabilities including midair refueling; improvement in operational roles; enhanced combat capability; maintainability improvements; and active electronically scanned array radar, an electronic warfare suite and beyond-visual-range missile capabilities, a company executive said. The Indian Air Force will sign a formal contract with HAL during the Aero India air show in Bengaluru next month, according to an MoD official. Each LCA MK1A fighter is powered by a single F404-GE-IN20 engine, and each jet will cost about $78.5 million, another HAL executive said, adding that the program is expected to generate 5,000 jobs in India. https://www.defensenews.com/air/2021/01/14/indian-government-clears-65-billion-deal-for-homemade-tejas-fighter-jets

  • These super-small drones no longer need a battery

    9 juillet 2019 | International, Aérospatial

    These super-small drones no longer need a battery

    By: Kelsey D. Atherton To be a fly on the wall, an observer must be ubiquitous, unobtrusive and quiet. What if, instead, the observer was just a tiny fly-sized robot, independently powered, able to travel like its insect inspiration? That's one possibility from the long line of work on the RoboBee series of miniature flying machines, the latest of which recently flew independently under its own photovoltaic power. RoboBee is a long-running project of the Harvard Microrobotics Lab and the Wyss Institute for Biologically Inspired Engineering. The end goal is ultimately controlled swarms of insect-sized flying machines, with visions of these swarms performing everything from plant pollination to surveillance. These are ambitious aims, and all have been hindered to this point by a fundamental constraint on the form: the robots are too small to carry batteries. Much of the flight design uses a tethered power supply, allowing the designers to craft Piezoelectric motors that expand and contract as electrical current passes through the muscle-like membranes. This created wings that could flap and propel the robot upward, but it wasn't until recently that the robot could do it on its own power supply. RoboBees are smaller than any drone currently employed by the U.S. military, minute enough to make the palm-sized Black Hornet feel gargantuan. Without a sensor payload, it'd be a novelty, but the military has already invested in cheap, expendable sensor-carrying drone gliders for tasks such as meteorological data collection. Should this power supply enable RoboBees to support a meaningful sensor package, they could be used in a similar fashion, scattered as sensors that can flap their way into a new position. Holding six solar power cells on a stick, and with a second set of wings, the vehicle successfully flew under its own power, even if only for the briefest of moments. The researchers' documentation of their project was published in scientific journal Nature June 26, appearing under the title “Untethered flight of an insect-sized flapping-wing microscale aerial vehicle.” The whole RoboBee weights 259 milligrams, or less than a paperclip, and under special lights was able to generate enough lift to support an additional payload of 70 mg, which could be used for lightweight sensors, control electronics, or larger power supply in the future. Fitting sensors to a craft the small is likely a challenge, but also essential for the promise of the device. There is also the small matter that, even using photovoltaic cells, the robot needs an alien sun to fly. “The Robobee X-Wing needs the power of about three Earth suns to fly, making outdoor flight out of reach for now,” stated the summary from Harvard's School of Engineering and Applied Sciences. “Instead, the researchers simulate that level of sunlight in the lab with halogen lights.” Should the sensors exist, and the device become capable of outdoor flight, microrobotics could become a ubiquitous part of modern life, performing functions alongside insects and relaying sensor information back as an unseen intelligence platform. https://www.c4isrnet.com/unmanned/robotics/2019/07/08/these-super-small-drones-no-longer-need-a-battery/

  • What’s industry role in DoD information warfare efforts?

    21 juillet 2020 | International, Aérospatial, C4ISR

    What’s industry role in DoD information warfare efforts?

    Mark Pomerleau Government leaders are telling industry they need help with integration as the Department of Defense and individual services push toward a unifying approach to information warfare. Information warfare combines several types of capabilities, including cyber, intelligence, electronic warfare, information operations, psychological operations and military deception. On a high-tempo battlefield, military leaders expect to face against a near peer or peer adversary. There, one-off solutions, systems that only provide one function, or those that can't feed information to others won't cut it. Systems must be multi-functional and be able to easily communicate with other equipment and do so across services. “A networked force, that's been our problem for years. Having built a lot of military systems, a lot in C4 and mission command, battle command, we build them and buy them in stovepipes. Then we think of integration and connecting after the fact,” Greg Wenzel, executive vice president at Booz Allen, told C4ISRNET. “My whole view ... networking the force really is probably the best thing to achieve overmatch against our adversaries.” Much of this networking revolves around new concepts DoD is experimenting with to be better prepared to fight in the information environment through multi domain operations or through Joint All-Domain Command and Control (JADC2). The former aims to seamlessly integrate the capabilities of each domain of warfare – land, sea, air, space and cyber – at will. It also aims to integrate systems and capabilities across the services under a common framework to rapidly share data. While not an official program, JADC2 is more of a framework for the services to build equipment. “It's more likely a mish-mash of service level agreements, pre-scripted architecting and interoperability mandates that you got to be in keeping with those in order to play in the environment,” Bill Bender, senior vice president of strategic accounts and government relations at Leidos, told C4ISRNET of JADC2. “It's going to take a long journey to get there because, oh by the way, we're a very legacy force and ... a limited amount of technology has the interoperability that is absolutely required for that mission to become a reality.” The “information warfare” nomenclature can feel nebulous and hard to understand for industry officials that provide solutions to the Pentagon. “It's a pretty broad definition. I think it's something that the DoD is struggling with, that's what we're struggling with in industry and it also makes it challenging because no one really buys equipment that way,” Anthony Nigara, vice president for strategy and business development in L3Harris Space & Airborne Systems, said. “No one really buys stuff to an abstract term like information warfare.” Others agreed that the term “information warfare” may be too broad, an issue that's further complicated as each service tackles information warfare in their own way. Most members of industry C4ISRNET talked with on the need to integrate described the key theme of a more networked force as a unifying way to think about the new push to information warfare. “There's a lot of discussions about the Joint All Domain Operations or the multidomain operations. When we look at that and we want to say ‘okay, what is information warfare really mean to everyone?” Steven Allen, director of information operations and spectrum convergence at Lockheed Martin rotary and mission systems, told C4ISRNET. “We look at it as how can we get the right information to warfighters in order to fight or how do we get the right information for them to plan? How do we move all that data across whether it's different levels of security or different levels of the warfighting and the data associated with it.” Others expressed the need for contractors to be flexible with how DoD is describing its needs. “Industry has learned to be flexible in responding to messaging calling for new situational awareness capabilities while other established capabilities were being mandated for use in cyber exercises,” Jay Porter, director of programs at Raytheon Intelligence & Space, said. The push to a more information warfare-centric force under the guise of larger concepts to defeat adversaries is pushing the DoD as a whole to fight in a more joint manner. Paul Welch, vice president and division manager for the Air Force and defense agencies portfolio at Leidos, explained that there's a consistent view by the services and the department that they must integrate operations within the broad umbrella of activities called information warfare just as they're integrating warfighting capabilities between the services and across the domains. This goes beyond merely deconflicting activities or cooperation, but must encompass true integration of combat capabilities. Some members of industry described this idea as one part of convergence. “When I talk about convergence, my observation is there is a convergence in terms of a family of technologies and of a family of challenge problems and how do they come together,” Ravi Ravichandran, chief technology officer of the intelligence and security sector at BAE, told C4ISRNET. Ravichandran provided five specific challenge problems the military may have in which a married suite of technologies can help provide an advantage against adversaries. They include JADC2, overmatch or the notion of assembling technologies in a way better than enemies, joint fires where one service's sensors may be acquiring a target and passing that target off to another service to prosecute it, sensing in the electromagnetic spectrum and strategic mobility to get forces and resources to a particular place at a particular time. Similarly, Welch provided the notional example of an F-35 flying over an area, seeing something on its sensors and sending that information to either an Army unit, a carrier strike group, a Marine Corps unit, or even a coalition partner to seamlessly and rapidly understand the information and act upon it. These sensors must be incorporated into a joint kill chain that can be acted upon, coordinated and closed by any service at any time. Allen noted that when looking at information warfare, his business is examining how to take a variety of information from sensor information to human information to movement information and pull it all together. “There's a lot of discussion on [artificial intelligence] AI and machine learning and it's very, very important, but there's also important aspects of that, which is hey what's the technology to help the AI, what's that data that's going to help them,” he said. “We tend to look very closely with the customers on how do we really shape that in terms of the information you're getting and how much more can you do for the warfighter.” By bringing all these together, ultimately, it's about providing warfighters with the situational awareness, command and control and information they need to make decisions and cause the necessary effects, be it cyber C4ISR, intelligence or electronic warfare, Nigara said. Porter said at Raytheon's Intelligence & Space outfit, they view information warfare as “the unification of offensive and defensive cyber missions, electronic warfare and information operations within the battlespace.” Integrating EW and IO with cyber will allow forces to take advantage of a broader set of data to enable high-confidence decision-making in real time, he added, which is particularly important in the multi-domain information environment to influence or degrade adversary decision making. From a Navy perspective, the ability to share data rapidly across a distributed force within the Navy's distributed maritime operations concept will be critical for ensuring success. “We will certainly have to include the mechanisms with which we share information, data and fuse that data from node to node. When I say node to node, a node may be a ship, a node may be an unmanned vehicle and a node may be a shore based facility,” Kev Hays, director of information warfare programs at Northrop Grumman, who mostly supports the Navy, said regarding areas Northrop is investing. “Linking all those participants into a network ... is critically important. We have quite a bit of technology we're investing in to help communicate point to point and over the horizon and a low probability of intercept and low probability of detection fashion.” Ultimately, the information space is about affecting the adversary's cognitive space, they said. “When it comes to information warfare, it's a lot less tangible ... It's not tank on tank anymore. You're trying to affect people's perception,” James Montgomery, capture strategy lead for information operations and spectrum convergence at Lockheed Martin rotary and mission systems, told C4ISRNET. As a result, he said, it is critical to take the time with the customer to truly understand the concepts and capabilities and how they all fit together in order to best support them. “Really spending time with them [the customer] and understanding what it is that they're attempting to get at. It helps us better shape the requirements but it also helps us better understand what is it they're asking for,” he said. “When you're moving forward and attempting to come together with both a software hardware based solution to something, it takes a lot of talking time and a lot of touch time with that customer to understand where their head's at.” https://www.c4isrnet.com/information-warfare/2020/07/19/whats-industry-role-in-dod-information-warfare-efforts/

Toutes les nouvelles