28 juillet 2020 | International, Aérospatial

F-35 Propulsion Upgrade Moves Forward Despite Uncertainty

Steve Trimble

Stabilizing the production system and securing a funded, long-term upgrade plan are now the main objectives for Pratt & Whitney's F135 propulsion system for the Lockheed Martin F-35.

Although first delivered for ground--testing 17 years ago, the F135 remains a lifeline in Pratt's combat aircraft engines portfolio for new-development funding. The U.S. military engines market is entering an era of transition with great uncertainty for the timing of the next major combat aircraft program.

  • Enhancement Package replaces “Growth Option”

  • New F-35 propulsion road map due in six months

The transition era begins with the likely pending delivery of Pratt's most secretive development project. In 2016, the U.S. Air Force named Pratt as one of seven major suppliers for the Northrop Grumman B-21 bomber. The Air Force also has set the first flight of the B-21 for around December 2021. That timing means Pratt is likely to have delivered the first engine for ground-testing. At some point within the next year, Pratt should be planning to deliver the first flight-worthy engine to Northrop's final assembly line in Palmdale, California, to support the Air Force's first B-21 flight schedule.

As the bomber engine development project winds down, the propulsion system for the next fighter aircraft continues to be developed, but without a clear schedule for transitioning to an operational system.

The Air Force Research Laboratory's Adaptive Engine Transition Program (AETP) is sponsoring a competition to develop an adaptive engine that can modulate the airflow into and around the core to improve fuel efficiency and increase range. The AETP competition is between Pratt's XA101 and GE's XA100 designs, with the first engines set to be delivered for ground-testing by the end of this year or early next year.

As 45,000-lb.-thrust-class engines, the first AETP designs are optimized for repowering the single-engine F-35, but the F-35 Joint Program Office (JPO) has established no requirement to replace the F135 for at least another five years. A follow-on effort within the AETP is developing a similar engine for a next-generation fighter, but neither the Air Force nor the Navy have committed to a schedule for transitioning the technology into an aircraft-development program. That leaves Pratt's F135 as the only feasible application for inserting new propulsion technology for a decade more.

After spending the last decade focused on completing development of the F-35 and upgrading the software, electronics and mission systems, the JPO is developing a road map to improve the propulsion system through 2035.

As the road map is being developed, program officials also are seeking to stabilize the engine production system. Pratt delivered about 600 F135s to Lockheed through the end of last year, including 150—or about 25%—in 2019 alone. The JPO signed a $7.3 billion contract with Pratt last year to deliver another 509 engines in 2020-22, or about 170 a year.

Although Pratt exceeded the delivery goal in 2019 by three engines, each shipment came an average of 10-15 days behind the schedule in the contract. The fan, low-pressure turbine and nozzle hardware drove the delivery delays, according to the Defense Department's latest annual Selected Acquisition Report on the F-35. Lockheed's production schedule allows more than two weeks before the engine is needed for the final assembly line, so Pratt's late deliveries did not hold up the overall F-35 schedule, says Matthew Bromberg, president of Pratt's Military Engines business.

F135 deliveries finally caught up to the contract delivery dates in the first quarter of this year, but the supply chain and productivity disruptions caused by the COVID-19 pandemic have set the program back. About five engines scheduled for delivery in the second quarter fell behind the contractual delivery date, Bromberg says. The pressure will grow as a loaded delivery schedule in the second half of the year adds pressure on deliveries, but Pratt's supply chain managers expect to be back within the contract dates in the first quarter of next year, he says.

The F-35 program's political nature also has caused program disruptions. The Defense Department's expulsion of Turkey from the F-35 program last year also banished the country's supply chain, which contributed 188 parts to the F135. In particular, Alp Aviation produces the Stage 2, 3, 4 and 5 integrally bladed rotors (IBR) for the F135.

As of early July, about 128 parts now made in Turkey are ready to transition to other suppliers, of which about 80% are based in the U.S., according to Bromberg. The new suppliers should be requalified to produce those parts in the first quarter of 2021 and ready to meet production rate targets for Lot 15 aircraft, which will begin deliveries in 2023.

“The overriding objective was to move with speed and diligence along the transition plan and ensure we are ready to be fully out of Turkey by about Lot 15,” Bromberg explains. “And we are on track for that.”

As Pratt transfers suppliers, the company also has to manage the effect on potential upgrade options. Alp Aviation, for example, had announced a research and development program to convert the finished titanium IBRs to a more resilient nickel material.

For several years, Pratt has sought to improve the performance of the F135 above the baseline level. In 2017, the company unveiled the Growth Option 1.0 upgrade, which is aimed at delivering modular improvements that would lead to a 5% or 6% fuel-burn improvement and a 6-10% increase in thrust across the flight envelope. The Marine Corps, in particular, was seeking additional thrust to increase payload mass for a vertical landing, but the proposed package did not go far enough to attract the JPO's interest.

“It missed the mark because we didn't focus our technologies on power and thermal management,” Bromberg says.

A year later, Pratt unveiled the Growth Option 2.0. In addition to providing more thrust at less fuel burn, the new package offered to generate more electrical power to support planned advances in the aircraft's electronics and sensors, with the ability to manage the additional heat without compromising the F-35's signature in the infrared spectrum.

Last fall, the JPO's propulsion management office teamed up with the Advanced Design Group at Naval Air Systems Command to analyze how planned F-35 mission systems upgrades will increase the load on the engine's thrust levels and power generation and thermal management capacity. In May, the JPO commissioned studies by Lockheed and Pratt to inform a 15-year technology-insertion road map for the propulsion system. The road map is due later this year or in early 2021, with the goal of informing the spending plan submitted with the Pentagon's fiscal 2023 budget request.

As the studies continue, a name change to Pratt's upgrade proposals reveals a fundamental shift in philosophy. Pratt's earlier “Growth Option” terminology is gone. The proposals are now called Engine Enhancement Packages (EEP). The goal of the rebranding is to show the upgrades no longer are optional for F-35 customers.

“As the engine provider and the [sustainment] provider, I'm very interested in keeping everything common,” Bromberg says. “The idea behind the Engine Enhancement Packages is they will migrate into the engines or upgrade over time. We don't have to do them all at once. The [digital engine controls] will understand which configuration. That allows us again to be seamless in production, where I would presumably cut over entirely, but also to upgrade fleets at regularly scheduled maintenance visits.”

Pratt has divided the capabilities from Growth Options 1 and 2 into a series of EEPs, with new capabilities packaged in increments of two years from 2025 to 2029.

“If you go all the way to the right, you get all the benefits of Growth Option 2, plus some that we've been able to create,” Bromberg says. “But if you need less than that and you're shorter on time or money, then you can take a subset of it.”

Meanwhile, the Air Force continues to fund AETP development as a potential F135 replacement. As the propulsion road map is finalized, the JPO will decide whether Pratt's F135 upgrade proposals support the requirement or if a new engine core is needed to support the F-35's thrust and power-generation needs over the long term.

Previously, Bromberg questioned the business case for reengining the F-35 by pointing out that a split fleet of F135- and AETP-powered jets erodes commonality and increases sustainment costs. Bromberg also noted it is not clear the third-stream technology required for the AETP can be accommodated within the roughly 4-ft.-dia. engine bay of the F-35B.

Now Bromberg says he is willing to support the JPO's decision if the road map determines a reengining is necessary. “If the road map indicates that they need significantly more out of the engine than the Engine Enhancement Packages can provide, we would be the first to say an AETP motor would be required,” Bromberg says. “But we think a lot of the AETP technologies will make those Engines Enhancement Packages viable.”

https://aviationweek.com/ad-week/f-35-propulsion-upgrade-moves-forward-despite-uncertainty

Sur le même sujet

  • Mixed-reality systems can bring soldier feedback into development earlier than ever before. Here’s how the US Army is using it.

    10 novembre 2020 | International, C4ISR

    Mixed-reality systems can bring soldier feedback into development earlier than ever before. Here’s how the US Army is using it.

    Nathan Strout ABERDEEN PROVING GROUND, Md. — The U.S. Army's Combat Capabilities Development Command has made clear it wants to introduce soldier feedback earlier in the design process, ensuring that new technologies are meeting users' needs. “Within the CCDC, the need to get soldier feedback, to make sure that we're building the appropriate technologies and actually getting after the users' needs is critical,” said Richard Nabors, acting principal deputy for systems and modeling at the command's C5ISR Center (Command, Control, Computers, Communications, Cyber, Intelligence, Surveillance and Reconnaissance). “There's a concerted effort within the C5ISR Center to do more prototyping not just at the final system level ... but to do it at the component level before the system of systems is put together,” he added. But how can the service accomplish that with systems still in development? One answer: virtual reality. The Army's CCDC is testing this approach with its new artificial intelligence-powered tank concept: the Advanced Targeting and Lethality Aided System, or ATLAS. While tank operations are almost entirely manual affairs, ATLAS aims to automate the threat detection and targeting components of a gunner's job, greatly increasing the speed of end-to-end engagements. Using machine-learning algorithms and a mounted infrared sensor, ATLAS automatically detects threats and sends targeting solutions to a touch-screen display operated by the gunner. By touching an image of the target, ATLAS automatically slews the tank's gun to the threat and recommends the appropriate ammunition and response type. If everything appears correct, the gunner can simply pull the trigger to fire at the threat. The process takes just seconds, and the gunner can immediately move on to the next threat by touching the next target on the display. ATLAS could revolutionize the way tank crews operate — at least in theory. But to understand how the system works with real people involved and whether this is a tool gunners want, CCDC needed to test it with soldiers. The Army has set up an ATLAS prototype at Aberdeen Proving Ground in Maryland, and it hopes to conduct a live-fire exercise soon with targets in a field. However, to collect useful feedback, CCDC is giving soldiers a more robust experience with the system that involves multiple engagements and varying levels of data quality. To do this, the command has built a mixed-reality environment. “It gives us the opportunity ... to get the soldiers in front of this system prior to it being here as a soldier touchpoint or using the live system so we get that initial feedback to provide back to the program, to get that soldier-centric design, to get their opinions on the system, be that from how the GUI is designed to some of the ways that the system would operate,” explained Christopher May, deputy director of the C5ISR Center's Modeling and Simulation Division. The virtual world In the new virtual prototyping environment — itself a prototype — users are placed in a 3D world that mimics the gunner station while using a physical controller and display that is a carbon copy of the current ATLAS design. The CCDC team can then feed simulated battlefield data into the system for soldiers to respond to as if they were actually using ATLAS. Like most virtual reality systems, the outside looks less impressive than the rendered universe that exists on the inside. Sitting down at the gunner's seat, the user's vision is enveloped by a trifold of tall blue walls, cutting the individual off from the real world. Directly in front of the chair is a recreation of ATLAS' touch-screen display and a 3D-printed copy of the controller. Putting on the virtual reality headset, the user is immersed in a 3D rendering of the ATLAS prototype's gunner station, but with some real-world elements. “We're leveraging multiple technologies to put this together. So as the operator looks around ... he has the ability to see the hand grips. He also has the ability to see his own hands,” May said. All in all, the mixed-reality environment creates the distinct impression that the user is in the gunner's chair during a real-life engagement. And that's the whole point. It's important to note the virtual reality system is not meant to test the quality of the AI system. While the system populates the virtual battlefield with targets the same way ATLAS would, it doesn't use the targeting algorithm. “We're not using the actual algorithm,” May said. “We're controlling how the algorithm performs.” Switching up the scenarios Another advantage to the mixed-reality environment: The Army can experiment with ATLAS in different vehicles. CCDC leaders were clear that ATLAS is meant to be a vehicle-agnostic platform. If the Army decides it wants ATLAS installed on a combat vehicle rather than a tank — like the current prototype — the CCDC team could recreate that vehicle within the simulated environment, giving users the opportunity to see how ATLAS would look on that platform. “We can switch that out. That's a 3D representation,” May said. “This could obviously be an existing tactical vehicle or a future tactical vehicle as part of the virtual prototype.” But is the virtual reality component really necessary to the experience? After all, the interactions with the ATLAS surrogate take place entirely through the touch screen and the controller, and a soldier could get an idea of how the system works without ever putting on the headset. May said that, according to feedback he's received, the virtual reality component adds that extra level of realism for the soldier. “They thought it added to their experience,” May said. “We've run through a version of this without the mixed reality — so they're just using the touch screens and the grips — and they thought the mixed reality added that realism to really get them immersed into the experience.” “We've had over [40 soldiers] leveraging the system that we have here to provide those early insights and then also to give us some quantitative data on how the soldier is performing,” he added. “So we're looking from a user evaluation perspective: Again, how does the [aided target recognition] system influence the soldier both positively, potentially and negatively? And then what is the qualitative user feedback just of the system itself?” In other words, the team is assessing how soldiers react to the simulated battlefield they are being fed through the mixed reality system. Not only is the team observing how soldiers operate when the data is perfect; it also wants to see how soldiers are impacted when fed less accurate data. Soldiers are also interviewed after using the system to get a sense of their general impressions. May said users are asked questions such as “How do you see this impacting the way that you currently do your operations?” or “What changes would you make based off your use of it?” The virtual prototyping environment is an outgrowth of CCDC's desire to push soldier interactions earlier in the development process, and it could eventually be used for other systems in development. “We're hoping that this is kind of an initial proof of concept that other programs can kind of leverage to enhance their programs as well,” May said. “This is a little bit of a pilot, but I think we can expect that across the C5ISR Center and other activities to spend and work a lot more in this virtual environment,” added Nabors. “It's a great mechanism for getting soldier feedback [and] provides us an opportunity to insert new capabilities where possible.” https://www.c4isrnet.com/artificial-intelligence/2020/11/09/mixed-reality-systems-can-bring-soldier-feedback-into-development-earlier-than-ever-before-heres-how-the-us-army-is-using-it/

  • Air Force Uses AI to Accelerate Pilot Training

    19 septembre 2018 | International, Aérospatial

    Air Force Uses AI to Accelerate Pilot Training

    By Mandy Mayfield The Air Force is hoping a suite of new artificial intelligence and augmented reality technologies will help accelerate the speed at which pilots and airmen are trained, the Air Education and Training Command leader said Sept. 18. “We are actually allowing our students to explore these [AI] tools of learning and measuring what's going on in their brain, what's going on in their body, what's going on with the effectiveness of them doing the job we are trying to teach them to do,” Lt. Gen. Steven Kwast, Air Education and Training Command commander, said at the Air Force Association's annual Air, Space and Cyber Conference at National Harbor, Maryland. AETC is in the midst of an experimental program, the Pilot Training Next initiative, which is utilizing AI to train pilots — in hopes of not only streamlining the process of airmen becoming flight ready — but also improving the quality of their education, Kwast said. “So the data is very promising in that we can accentuate the adult brain to learn fast, better and, I'll say, [with] more ‘stick' — meaning that when you learn something you remember it longer and better,” Kwast added. As pilots use the “emerging technologies” to learn, the Air Force is learning alongside them, aggregating each pilot's data onto a grade sheet, he said. Although leadership is enthusiastic about the new technologies, the program is still underway and results about its effectiveness aren't available yet,, Kwast said. “We aren't at the place where we can say what we can do with it yet.” Some of the beta testing should be completed by the summer of 2019, he added. Maj. Justin Chandler, a Pilot Training Next team member, also touted the technologies, saying they allow future airmen 24-hour access to pilot instruction. “The artificial intelligence allows us to ensure that they [student pilots] don't pick up bad habits,” Chandler said. http://www.nationaldefensemagazine.org/articles/2018/9/18/air-force-uses-ai-to-accelerate-pilot-training

  • Navy awards $732M contract for satellite ground systems

    3 décembre 2019 | International, Naval

    Navy awards $732M contract for satellite ground systems

    By: Nathan Strout General Dynamics will provide sustainment services for the ground system for the Navy's narrowband satellite communication systems over the next decade, the company announced Nov. 27. The sole-source $732 million contract was awarded Nov. 8 and work expected to be completed by Nov. 2029. The Mobile User Objective System is the Navy's next generation narrowband satellite communications system, providing secure voice, video and data communications to military users all over the globe. MUOS was built to replace the Ultra High Frequency constellation, although the new system will support the legacy system for now. According to General Dynamics, just one MUOS satellite can provide four times the capacity of the entire legacy system. The MUOS ground segment is made up of four ground station facilities located around the world. According to the General Dynamics web site, each ground station has three free-standing antennas to receive radio call relayed through the MUOS satellites. Lockheed Martin is the prime contractor for the MUOS satellites, while General Dynamics was selected to build the ground system. “MUOS will provide our warfighters with the ability to communicate securely, anywhere, anytime, with voice clarity and data transmission speed similar to using a civilian cellphone,” said Manny Mora, vice president and general manager for General Dynamics' space and intelligence systems. “This capability delivers a whole new level of connectivity for troops in the field." On Oct. 16, the Navy announced that MUOS was deemed operationally effective following its months-long multiservice operational test and evaluation over the summer. With that designation, the new system is ready to be used in unrestricted operation. https://www.c4isrnet.com/battlefield-tech/c2-comms/2019/12/02/navy-awards-732m-contract-for-satellite-ground-systems

Toutes les nouvelles