31 mai 2021 | International, Aérospatial, Naval, Terrestre, C4ISR, Sécurité

Eyeing China, Biden defense budget boosts research and cuts procurement

U.S. President Joe Biden’s first budget request for the Department of Defense slashes procurement by $8 billion, whacking scores of legacy weapons and systems as a way to deliver a $5.5 billion boost for the development and testing of cutting-edge technologies that could deter China.

https://www.defensenews.com/congress/2021/05/28/eyeing-china-biden-defense-budget-boosts-research-and-cuts-procurement/

Sur le même sujet

  • Six considerations from the Defense News Top 100 list

    19 août 2020 | International, Aérospatial, Naval, Terrestre, C4ISR, Sécurité

    Six considerations from the Defense News Top 100 list

    By: Byron Callan As usual, the annual Defense News Top 100 rankings shed light on changes in the defense sector, while raising additional questions for all interested parties. The rankings among U.S. firms have been relatively stable, with the primary catalyst for several years worth of change being acquisitions or divestitures. The U.S. order will again change in next year's edition, when Raytheon Technologies appears as a single entity for the first time. Defense News added Chinese enterprises in 2019, and so it's good to see this extended in 2020, as China has the second largest defense budget in the world after the U.S. This year's list raises six points worth highlighting, while observing how relative rankings have changed over time. First: These lists are difficult to compile, as they depend in large part on the willingness of contractors to provide sales data. There are some omissions, which hopefully could show up in future rankings — notably, BWX Technologies, SpaceX, General Atomics, Mantech, Parsons and Kratos for the U.S.; more Japanese firms including Kawasaki Heavy Industries; Navantia of Spain and other European naval shipyards; United Aircraft in Russia; ASC Pty in Australia; and PGZ in Poland. There are other Indian firms as well that would likely qualify. Second: It is intriguing to note how long either Lockheed or its successor Lockheed Martin has been the No. 1 U.S. contractor. It's been at the top of the Defense News list since 2003, and data from annual reports show it has been the top U.S. contractor, by sales, since 1980. Size may matter in perpetuating a No. 1 position, so it is notable that the ratio of Lockheed's defense sales to the second-largest contractor has also increased over the years. For this year's list, Lockheed's defense dollars are 165 percent of Boeing's defense sales; in 1988, they were 130 percent higher than the next largest defense contractor, McDonnell Douglas. Third: As much as it's easy to categorize contractors by their home country, it bears repeating that this a global, multinational business with international sales not just from exports. A look at the Australian defense industry highlights the “multi-domestic” nature of contractors in that country. BAE Systems is listed as a U.K. company, but it derives higher annual sales from the U.S. and Saudi Arabia than from London. And in 2019, Israeli firm Elbit had more of its total sales from North America (28 percent of total) than Israel (24 percent of total). Fourth: While the rankings don't capture the changes in the composition of some of the largest contractors, this may have a bearing on competition in the 2020s. CACI and Leidos still are predominantly services contractors, but some of their recent acquisitions, most significantly the Leidos acquisition of Dynetics, are more product-centric. Fifth: Obviously the rankings only capture the top level of the global defense sector, and in assessing supply chains, resiliency, the pace of innovation and technology ingestion, a far wider net has be cast. A July 2020 report by Israel's INSS observed that Israel's defense industry, which has seen consolidation in recent years, is comprised of “about 600 companies” and employs over 45,000 workers. Much as the rankings of the top contractors are of interest, a more critical assessment of the health and agility of contractors may rest on what's happening with smaller firms. Finally: The question of state, private or public ownership is a sixth factor to weigh. State ownership of Chinese firms and partial government stakes in some of the largest European enterprises has entailed different incentives and goals — it's hard to conclude, given the nature of China's rise, that government ownership of contractors has stymied the development and production of competitive weapons systems, though there's little transparency on efficiency. In the 2020s, it remains to be seen how different and competing ownership shapes future rankings. Byron Callan is a policy research expert at Capital Alpha Partners. He specializes in the defense and aerospace industries. https://www.defensenews.com/top-100/2020/08/17/six-considerations-from-the-defense-news-top-100-list/

  • The trouble when military robots go underground

    23 mars 2020 | International, Terrestre

    The trouble when military robots go underground

    By: Kelsey D. Atherton Picture the scene: A rural compound in northwest Syria. An underground tunnel beneath the compound, where a cornered man with a suicide vest and two children hides from a raid by the U.S. Army's Delta Force. Outside the compound on Oct. 26, waiting and at the ready, was a robot. The vested man was later identified as Abu Bakr Al-Baghdadi, the self-proclaimed caliph of the Islamic State of Syria and the Levant. “We had a robot just in case because we were afraid he had a suicide vest and if you get close to him and he blows it up, you're going to die. You're going to die. He had a very powerful suicide vest,” President Donald Trump said in a press conference about the raid in the following days. “The robot was set, too, but we didn't hook it up because we were too — they were moving too fast. We were moving fast,” the president continued. “We weren't 100 percent sure about the tunnel being dead ended. It's possible that there could have been an escape hatch somewhere along that we didn't know about.” In this case, the robot never went in the tunnels. Picture the scene, four months later, in the damp subterranean levels of the never-finished Satsop nuclear power plant outside Elma, Washington. There, engineers and scientists are testing the machines and algorithms that may guide missions for a time, preparing for a time when the robots won't remain on the sidelines. None of the robots fielded at the Defense Advanced Research Projects Agency's Subterranean Challenge urban circuit in Elma in February are particularly battle-ready, though a few could likely work in a pinch. Apart from a single human commander able to take remote control, the robots navigate, mostly autonomously. As captured on hours of video, the robots crawled, floated, rolled and stumbled their way through the course. They mapped their environment and searched for up to 20 special artifacts in the special urban circuit courses, built in the underground levels around a never-used cooling tower. The artifacts included cellphones emitting bluetooth, Wi-Fi and occasionally video. They included red backpacks and thermal manikins warmed to the temperature of humans playing an audio recording, and they included carbon dioxide gas and warm blowing vents. This urban circuit is the second of three underground environments that DARPA is using to test robots. Phones, manikins and backpacks are common across the tunnel, urban and cave settings that constitute the full range of subterranean challenges. The straightforward mission of the contest is to create machines that are better at rescue in environments that are dangerous and difficult for first responders, who are humans. If robots can find people trapped underground, then humans can use their energy getting to those same people, rather than expend that energy searching themselves. A subtext of the Subterranean Challenge is that the same technologies that lead robots to rescue people underground could also lead infantry to find enemies hiding in tunnel complexes. While Delta Force was able to corner al-Baghdadi in Syria, much of the military's modern interest in tunnel warfare can be traced back to Osama bin Laden evading capture for years by escaping through the tunnels at Tora Bora. Underground at Satsop, the future of warfare was far less a concern than simply making sure the robots could navigate the courses before them. That meant, most importantly, maintaining contact with the other robots on the team, and with a human supervisor. Thick concrete walls, feet of dirt, heavy cave walls and the metals embedded in the structure all make underground sites that the military describes as passively denied environments, where the greatest obstacle to communication through the electromagnetic spectrum is the terrain itself. It's a problem military leaders, particularly in the Army, are hoping to solve for future iterations of their networks. Team NUS SEDS, the undergrad roboticists representing the National University of Singapore Students for Exploration and Development of Space, arrived in Washington with one of the smallest budgets of any competitor, spending roughly $12,000 on everything from robot parts to travel and lodging. One of their robots, a larger tracked vehicle, was held up by U.S. Customs, and unable to take part in the competition. Not to be deterred, at the team's preparation area, members showed off a version of the most striking design innovation at the competition: droppable Wi-Fi repeaters. As designed, the robots would release a repeater the moment they lost contact with the human operator. To lighten the data load, the onboard computers would compress the data to one-hundredth of its size, and then send it through the repeater. “It's like dropping bread crumbs,” said Ramu Vairavan, the team's president. Unfortunately for NUS SEDS, the bread crumbs were not enough, and the team only found one artifact in its four runs between the two courses. But the bread-crumb concept was shared across various teams. Besides the physical competition taking place underground at Satsop, the urban circuit held a parallel virtual challenge, where teams selected robots and sensors from a defined budget and then programmed algorithms to tackle a challenge fully autonomously. The repeaters, such a popular innovation in the physical space, will likely be programmed into the next round of the virtual challenge. The first DARPA Grand Challenge, launched in 2004, focused on getting roboticists together to provide a technological answer to a military problem. Convoys, needed for sustaining logistics in occupied countries, are vulnerable to attack, and tasking humans to drive the vehicles and escort the cargo only increasing the fixed costs of resupply. What if, instead, the robots could drive themselves over long stretches of desert? After much attention and even more design, the March 2004 challenge ended with no vehicle having gone even a tenth the distance of the 142-mile track. A second Grand Challenge, held 18 months later, delivered far more successful results, and is largely credited with sparking the modern wave of autonomous driving features in cars. Open desert is a permissive space, and navigation across it is aided by existing maps and the ever-present GPS data. This is the same architecture that undergirds much of autonomous navigation today, where surface robots and flying drones can all plug into communication networks offering useful location data. Underground offers a fundamentally unknowable environment. Robots can explore parts of it, but even the most successful team on its most successful run found fewer than half of the artifacts hidden in the space. That team, CoSTAR (an acronym for “Collaborative SubTerranean Autonomous Resilient robots) included participants from Jet Propulsion Laboratory, CalTech, MIT, KAIST in South Korea and Lulea University of Technology in Sweden. CoSTAR used a mixture of wheeled and legged machines, and in the off-hours would practice everywhere from a local high school to a hotel staircase. Yet, for all the constraints on signal that impeded navigation, it was the human-built environment that provided the greatest hurdle. On a tour of the courses, it was easy to see how an environment intuitive to humans is difficult for machines. Backpacks and cellphones were not just placed on corners of roofs, but on internal ledges, impossible to spot without some aerial navigation. Whereas the tunnel course held relatively flat, the urban circuit features levels upon levels to explore. Stairs and shafts, wide-open rooms with the jangly mess of a mezzanine catwalk, all require teams and robots to explore space in three dimensions. Between runs, the humans running the competition would adjust some features, so that completing the course once does not automatically translate into perfect information for a second attempt. “How do we design equally hard for air and ground?” Viktor Orekhov, a DARPA contractor who designed the course, said. “There's an art to it, not a science. But there's also a lot of science.” Part of that art was building ramps into and out of an early room that would otherwise serve as a run-ending chokepoint. Another component was making sure that the course “leveled up” in difficulty the further teams got, requiring more senses and more tools to find artifacts hidden deeper and deeper in the space. “Using all senses is helpful for humans. It's helpful for robots, too,” said Orekhov. Teams competing in the Subterranean Challenge have six months to incorporate lessons learned into their designs and plans. The cave circuit, the next chapter of the Challenge scheduled for August 2020, will inevitably feature greater strain on communications and navigation, and will not even share the at least familiarity of a human-designed spaces seen in the urban circuit. After that, teams will have a year to prepare for the final circuit, set to incorporate aspects of tunnel, urban and cave circuits, and scheduled for August 2021. DARPA prides itself on spurring technological development, rather than iterating it in a final form. Like the Grand Challenges before it, the goal is at least as much to spark industry interest and collaboration in a useful but unexplored space. Programming a quadcopter or a tracked robot to find a manikin in a safety-yellow vest is a distant task from tracking and capturing armed people in the battlefields of the future, but the tools workshopped in late nights at a high school cafeteria between urban circuit runs may lead to the actual sensors on the robots brought along by Delta Force on future raids. The robots of the underground wars of tomorrow are gestating, in competitions and workshops and github pages. Someday, they won't just be brought along on the raid against a military leader. Wordlessly — with spinning LiDAR, whirring engines, and millimeter-wave radar — the robots might lead the charge themselves. https://www.c4isrnet.com/battlefield-tech/it-networks/2020/03/20/the-trouble-when-military-robots-go-underground/

  • Can commercial satellites revolutionize nuclear command and control?

    15 juillet 2019 | International, Aérospatial

    Can commercial satellites revolutionize nuclear command and control?

    By: Nathan Strout The rapid growth of commercial space makes the use of non-government satellites for nuclear command and control increasingly tempting, according to one official. During a speech June 26, Air Force Chief of Staff Gen. David Goldfein said that the service — which oversees both the United States' ground-based intercontinental ballistic missiles, as well as strategic bombers capable of delivering nuclear warheads — was open to the idea of using private sector satellites. “Whether it's Silicon Valley or commercial space, there's unlimited opportunities ahead right now for us in terms of how we think differently on things like nuclear command and control,” said Goldfien. “I, for one, am pretty excited about it.” The military has increasingly turned to the commercial sector to expand its capabilities more cost efficiently. For instance, the National Reconnaissance Office — the agency in charge of the nation's spy satellites — announced that it was looking to expand the amount of satellite imagery it buys from commercial companies. The Air Force has also expressed interest in developing a hybrid architecture for satellite communications, which would see war fighters able to switch between commercial and military satellites as they move through coverage areas. According to Goldfein, there's no reason that commercial capabilities could not similarly be applied to nuclear C2. “The work that we're doing in connecting the force and building a network force around the services in the conventional side has equal applications to the nuclear command and control side, because at the end of the day what we need is resilient capable architecture that keeps the commander in chief connected,” said Goldfien. “So one of the areas that I think we're going to be able to leverage significantly is the rapid and exciting expansion of commercial space in bringing low-Earth orbit capabilities that will allow us to have resilient pathways to communicate.” Currently, the military relies primarily on the Advanced Extremely High Frequency System for the nuclear sector. With four satellites in orbit and a fifth to be launched later this month, AEHF provides highly secure, anti-jamming communications for the military and national leaders like the commander in chief. It wasn't clear in Goldfein's comments whether he was interested in using commercial capabilities to augment, replace or work as a backup to AEHF and other military satellite systems. He did note that the sheer volume of satellites in some commercial constellations provides increased survivability for the network. “We want to get to a point both in conventional and unconventional, or conventional and nuclear, where if some portion of the network is taken out, our answer ought to be, ‘Peh, I've got five other pathways. And you want to take out 1,000 satellites of my constellation, of which I have five? Knock yourself out.' That's what I see is going to be a significant way that we're going to be able to leverage,” said Goldfein. The possibility of lowering costs is another major incentive to turning to the commercial sector to begin providing the communications necessary. “What we want to eventually get to is the reversal of the cost curve. Right now it actually costs us more to defend than it takes to shoot. And we want to reverse that so it actually costs them more to shoot than it takes for us to defend,” explained Goldfien. Goldfein pointed to commercial launches as an area where competition had helped drive down costs. “Increased access to affordable launch and smaller payloads that are more capable has caused this rapid expansion of commercial capabilities in space,” he said. “That may be one of the most exciting developments that we have going forward, because industry is going to help us solve many of these problems.” https://www.c4isrnet.com/battlefield-tech/c2-comms/2019/07/12/can-commercial-satellites-revolutionize-nuclear-command-and-control/

Toutes les nouvelles