21 juillet 2024 | International, Aérospatial

Cybercriminals Exploit CrowdStrike Update Mishap to Distribute Remcos RAT Malware

CrowdStrike warns of Remcos RAT malware targeting Latin America amid flawed update crisis causing IT disruptions.

https://thehackernews.com/2024/07/cybercriminals-exploit-crowdstrike.html

Sur le même sujet

  • Future Combat Air System: Owning the sky with the Next Generation Weapons System

    19 juin 2020 | International, Aérospatial

    Future Combat Air System: Owning the sky with the Next Generation Weapons System

    June 17, 2020 - When facing today's uncertainties, air superiority, which was underpinning western military operations for over 40 years, is no longer a given thing. The playing field is levelled by opponents' constant investment in integrated air defence systems, hypersonic weapon technologies and low observability technologies. Western air forces need to regain their ability to counter threats by accessing highly contested environments in a scalable, flexible and dynamic way rather than a local and static one. By intelligently teaming sixth generation manned fighters with unmanned platforms, the Next Generation Weapon System or NGWS will provide European air forces & navies with capabilities well beyond existing fighters. With no agreed definition of a sixth-generation fighter, Airbus' understanding is that such a New Generation Fighter or NGF will be a more sophisticated and connected platform than what currently exists. The NGF will set the next level of survivability in terms of passive stealth (signature reduction and electromagnetic emission control) and active stealth (electronic counter measures). The heart of the NGF will be provided by its extremely capable avionics and sensor suite. The increase in processing power, storage and connectivity will grant the pilot with greatly heightened situational awareness and the ability to rely not only on its own sensors and effectors, but also on other platforms' ones. Combined with the introduction of artificial intelligence and the ability to team with unmanned platforms, the NGF will become a battlefield management platform capable of operating deep within the enemy airspace. Powerful engines equipped with thrust-vectoring nozzles combined with high-performance flight control system will ensure the NGF's manoeuvrability, speed, and range. Innovative effectors will provide the fighter with unprecedented firepower, ranging from stand-off kinetic loads (including hypersonic ones) to directed energy weapons (lasers and microwaves) to electronic warfare capabilities (including cyberattack). However, more sophistication also means higher development costs leading to a declining number of platforms and/or effectors. Eventually such dangerously low levels result in critical availability levels. This is problematic, as operational studies indicate that penetrating contested environments will require an adequate number of manned platforms. Hence, it is important to set the right level of capabilities for the NGF by taking a holistic approach when right sizing its stealth, velocity, manoeuvrability, range, sensing and effects generation's capabilities. The NGF alone will not suffice for the most demanding missions in highly contested environments. To counter such threats, the NGF will team with unmanned platforms called Remote Carriers or RCs acting as force multipliers. Adding capabilities in a scalable and flexible manner will enhance the overall mission effectiveness, efficiency and survivability of the NGWS. RCs will be a family of unmanned platforms ranging from 200 kilograms for disposable RCs, to under 2 tons for recoverable ones and even several tons in the case of loyal wingmen. Airbus is currently studying and optimising with users their design. The RCs will provide various non-kinetic effects (Target Acquisition and Reconnaissance, Airborne Electronic Warfare) as well as kinetic ones (A2G SEAD/DEAD and Strike). With “packs” of RCs teaming with NGFs, the NGWS will clearly establish a new operational dimension. An augmented level of effectiveness will be achieved by opening new fields of tactics based on collaborative combat, the use of deception and numeric superiority. Efficiency will improve by ensuring the required mix of capabilities for a given mission is deployed. The NGF will stay at a safe stand-off distance whilst closer RCs deal with the threats, thus keeping the pilots out of harm's way and increasing the manned platform's survivability. Within the NGWS, the Air Combat Cloud or ACC will connect the manned and unmanned platform and provide the teaming intelligence for faster collaborative combat. The ACC will deliver common situational awareness by instantaneously capturing, sharing, merging and processing massive amounts of data from all connected NGFs and RCs. The ACC's warfare analytics and real-time coordination will provide better situational awareness, tactical options, decisions and collaborative effects Airbus has a leading role within the Next Generation Weapon System programme programme which will be the core of FCAS. Airbus is Dassault's main partner for the NGF and the lead for the RCs and the ACC with MBDA and Thales as its respective main partners. This will benefit Airbus' sites in securing work and maintaining technological excellence for decades to come. More on FCAS here View source version on Airbus: https://www.airbus.com/newsroom/stories/Future-Combat-Air-System-Owning-the-sky-with-the-Next-Generation-Weapons-System.html

  • Airbus reveals classified LOUT stealth testbed

    7 novembre 2019 | International, Aérospatial

    Airbus reveals classified LOUT stealth testbed

    Airbus Defence & Space has revealed a more than decade-long research and demonstration effort into very low observable (LO) technologies, conducted as a classified effort for the German defence ministry. Showing its LO UAV testbed – or LOUT – platform at Manching on 4 November, Airbus future combat air system (FCAS) programme manager Mario Hertzog said the company began initial concept work in 2007. This led to a contract award in 2010 to refine configuration and material choices, and the production of a diamond planform demonstrator was completed in 2014. Pointing to the company's long involvement with LO reseach, Hertzog says: “Bringing all our experience into one programme was a logical conclusion.” The chosen configuration used for aerodynamic and anechoic chamber testing since 2014 has a roughly 12m (39.3ft) wingspan and similar length, and is described as a 4t-class vehicle. The subsonic design would use a conventional engine concealed behind a diverterless inlet, and has twin intakes blended into its upper fuselage. A cockpit transparency and sensor apertures also formed part of the testing. The aircraft's exhaust nozzle also is shielded from beneath, with Hertzog noting that such a vehicle would be optimised for use against ground-based air-defence systems. This mission requirement also led the company to hone LO techniques for the vehicle's landing gear doors and centerline internal weapons bay, Hertzog notes. Focus areas have included testing LO materials, including a radar absorbent structure for engine intake ducts, and on assessing radar frequency and infrared signature performance. Modelling work has also been conducted to analyse the likely acoustic characteristics of such a design. Airbus confirms that it has completed contracted work on LOUT, but says additional activities could be conducted. However, Hertzog declines to say whether Berlin could seek a flight-test campaign with such a system. Lessons learned from the LOUT programme will be available for potential adaptation during a long-term evolution activity on the Eurofighter Typhoon, and on a proposed French-German-Spanish FCAS development, Hertzog says. "Stealth is and will remain an enabler for survivability," he notes. https://www.flightglobal.com/news/articles/pictures-airbus-reveals-classified-lout-stealth-tes-462003/

  • Navy Buys Tech that Can Land F-35s on Carriers with Pinpoint Accuracy

    25 juin 2019 | International, Aérospatial

    Navy Buys Tech that Can Land F-35s on Carriers with Pinpoint Accuracy

    By Hope Hodge Seck When the Navy's F-35C Joint Strike Fighter embarks on its first carrier deployment in 2021, it's expected to take with it a pinpoint-accurate landing system that purports to make the terror of night approaches and high sea-state traps all but a thing of the past. Raytheon announced this week that the Navy awarded a $234.6 million contract for a low-rate initial production of 23 of its Joint Precision Approach and Landing Systems, or JPALS -- enough to outfit every carrier and L-class amphibious assault ship with the technology. The contract also will include retrofitting three earlier systems that had been installed, a Raytheon executive said. Delivering to the Navy will start late next year, and installation will begin shortly thereafter, retired Navy Rear Adm. C.J. Jaynes, Raytheon's JPALS technical executive, told Military.com this week. The work is expected to be completed by August 2023, according to a published contract announcement. The system, which uses shipboard-relative GPS to guide planes in for landings and communicates with the aircraft from the deck of the carrier up to 200 nautical miles out, is accurate within 20 centimeters, or about 8 inches, Jaynes said. "It hits the third wire every time," she said. "It's [reliable in] all-weather and all sea states, including Sea State 5 (waves of roughly 8 to 12 feet)." For Navy pilots, catching the third of four wires on tailhook landings (or the second of three wires) has historically been a game of skill and precision that becomes orders of magnitude more difficult in the dark or in low-visibility weather conditions. Marine Corps F-35B pilots, who use the aircraft's vertical-landing configuration to put it down on the smaller flight decks of amphibious ships, face the same problems. And those issues may actually be exacerbated by a number of F-35-specific issues pending resolution. The custom-made, $400,000-per-unit helmet that F-35 pilots wear -- a piece of technology that allows them to "see through" the plane via a display for better situational awareness -- features symbology that emits a green glow, interfering with pilots' vision in low-light conditions. A video that emerged in 2017 showed an F-35 pilot landing "in a fog" on the amphibious assault ship America at night, his vision obscured by the helmet display. A recent Defense News report highlighted another issue with the helmet display at night that obscures the horizon. JPALS, which has already deployed in an early-development version with F-35Bs aboard the amphibious assault ships Wasp and Essex, would decrease reliance on visibility for accurate landings. Another F-35C-installed tool, Delta Flight Path, will keep aircraft on a steady glide slope for carrier landings, reducing inputs and corrections required from pilots. Early reports from the JPALS deployments with the Marines have been extremely positive, Jaynes said. "The pilots absolutely love it. It's been 100 percent accuracy, always available, they haven't had any issues at all," she said. "We know they have not had to abort any missions due to weather or due to sea state." Raytheon is now pitching an expeditionary version of JPALS, easily transportable and designed to guide aircraft to safe landings on bare airfields. The whole system can fit in five transit cases, be transported by C-130 Hercules, and be assembled within 90 minutes, Raytheon says. The Navy's future tanker drone, the MQ-25 Stingray, will also be JPALS-equipped; Jaynes said Raytheon is in talks with the service now about selling expeditionary JPALS for the MQ-25 program for shore-based tanker landings at locations like Norfolk, Virginia, or Point Mugu, California. Meanwhile, she said, the Marine Corps is considering buying a single expeditionary JPALS system for testing in order to develop a concept of operations to employ it. But "the closest customer outside of MQ-25 is actually the U.S. Air Force," Jaynes said. "They'd be able to move their aircraft possibly every 24 to 48 hours and do island-hopping in the Pacific. We're going over to [United States Air Forces in Europe -- Air Forces Africa] in July to talk with them about the system," she said. https://www.military.com/daily-news/2019/06/21/all-navy-carriers-amphibs-get-f-35-precision-landing-system.html

Toutes les nouvelles