2 octobre 2018 | International, Aérospatial

A new electric, unmanned ammunition loader emerges for the Rafale

Frédéric Lert, Bordeaux - Jane's International Defence Review

Turgis et Gaillard Industrie group presented its SEFIAM 1602e, a new electric and optionally manned ammunition loader that could work with the exported Dassault Rafale multirole fighter, at the ADS Show in Bordeaux.

Today the French forces largely use the diesel-powered SOVAM ammo loader. However, the SOVAM dates back to the early 1980s and does not fit well with the modern Rafale. When Dassault exports its jet, the SOVAM is not part of the sales package.

"There is therefore a real need for modern, simple, and easy-to-use equipment that can be offered to Rafale customers," argued Patrick Gaillard, general manager of Turgis et Gaillard.

The SEFIAM 1602e features an electric powertrain and the option of being remote controlled. Two packs of lithium ion batteries develop 36 kW and 10 hours of autonomy.

The SEFIAM 1602e can be used in a confined environment, weighs 1,500 kg (3,307 lbs) empty, and can drive up to 20 km/h (12 mph). It can load 1,500 kg and tow a 5-ton trailer.

The use of a remote control enables the technician to stay close to the pylon when guiding the loader. "Manoeuvres are faster and safer," Gaillard said.

https://www.janes.com/article/83474/a-new-electric-unmanned-ammunition-loader-emerges-for-the-rafale

Sur le même sujet

  • Pentagon’s Shyu to discuss missile defense partnerships with Australia

    29 août 2023 | International, Aérospatial

    Pentagon’s Shyu to discuss missile defense partnerships with Australia

    Heidi Shyu said a visit to Australia this summer started a conversation about how the two countries might partner on air and missile defense projects.

  • Could soldiers silently communicate using brain signals in the future?

    26 novembre 2020 | International, C4ISR

    Could soldiers silently communicate using brain signals in the future?

    Andrew Eversden WASHINGTON — A breakthrough in decoding brain signals could be the first step toward a future where soldiers silently communicate during operations. New research funded by the U.S. Army Research Office successfully separated brain signals that influence action or behavior from signals that do not. Using an algorithm and complex mathematics, the team was able to identify which brain signals were directing motion, or behavior-relevant signals, and then remove those signals from the other brain signals — behavior-irrelevant ones. “Here we're not only measuring signals, but we're interpreting them,” said Hamid Krim, a program manager for the Army Research Office. The service wants to get to the point where the machine can provide feedback to soldier's brains to allow them to take corrective action before something takes place, a capability that could protect the health of a war fighter. Krim pointed to stress and fatigue signals that the brain gives out before someone actually realizes they are stressed or tired, thus letting troops know when they should take a break. The only limit to the possibilities is the imagination, he said. Another potential future use is silent communication, Krim said. Researchers could build on the research to allow the brain and computers to communicate so soldiers can silently talk via a computer in the field. “In a theater, you can have two people talking to each other without ... even whispering a word,” Krim said. “So you and I are out there in the theater and we have to ... talk about something that we're confronting. I basically talked to my computer — your computer can be in your pocket, it can be your mobile phone or whatever — and that computer talks to ... your teammate's computer. And then his or her computer is going to talk to your teammate.” In the experiment, the researchers monitored the brain signals from a monkey reaching for a ball over and over again in order to separate brain signals. But more work is to be done, as any sort of battle-ready machine-human interface using brain signals is likely decades away, Krim said. What's next? Researchers will now try to identify other signals outside of motion signals. “You can read anything you want; doesn't mean that you understand it,” Krim said. “The next step after that is to be able to understand it. The next step after that is to break it down into into words so that ... you can synthesize in a sense, like you learn your vocabulary and your alphabet, then you are able to compose. “At the end of the day, that is the original intent mainly: to have the computer actually being in a full duplex communication mode with the brain.” The Army Research Office-backed program was led by researchers at the University of Southern California, with additional U.S. partners at the University of California, Los Angeles; the University of California, Berkeley; Duke University; and New York University. The program also involved several universities in the United Kingdom, including Essex, Oxford and Imperial College. The Army is providing up to $6.25 million in funding over five years. https://www.c4isrnet.com/battlefield-tech/it-networks/2020/11/25/could-soldiers-silently-communicate-using-brain-signals-in-the-future/

  • Rocket Lab to build military satellites for Space Development Agency

    8 janvier 2024 | International, Aérospatial

    Rocket Lab to build military satellites for Space Development Agency

    Rocket Lab has been growing its space systems business in recent years, and the SDA award marks its first prime satellite development contract.

Toutes les nouvelles