Back to news

June 22, 2020 | International, Aerospace, C4ISR

U.S. Hypersonic Defense Plan Emerges, But Not Cash

Steve Trimble

A U.S. hypersonic defense system has evolved from wide-open concept studies two years ago into a densely layered architecture populated by requirements for a new generation of space-based sensors and ground-based interceptors.

Over the next two years, the first elements of the Defense Department's newly defined hypersonic defense architecture could advance into operational reality if all the pieces can overcome various challenges, including the Pentagon's so far ambiguous commitment to long-term funding.

  • Space-based hypersonic tracking is possible in 2023
  • New sea-based interceptor will possibly be ready by mid-2020s
  • Pentagon seeks Congressional add-ons to finance plan

The Space Development Agency (SDA), with assistance from the Missile Defense Agency (MDA) and the Defense Advanced Research Projects Agency (DARPA), next year will start launching satellites into orbit with new forms of tracking technology optimized to perform the challenging task of remotely targeting hypersonic missiles as they maneuver in the atmosphere hundreds of miles below.

At the same time, the MDA and DARPA will soon begin demonstrating a new class of kinetic and nonkinetic interceptor technologies. In addition to solving the guidance and thermal challenges posed by hypersonic flight, this new class of missile defense weapons must be guidable by satellites potentially perched far over the horizon, not by sensors integrally linked on the ground to their launching systems.

Pentagon officials began conceiving a hypersonic defense architecture a year after launching multiple offensive weapons programs in 2017, seeking to close gaps in the ballistic defense system that missiles now fielded by adversaries are designed to exploit.

With the ability to maneuver hundreds of miles off a ballistic trajectory, hypersonic glide vehicles (HGVs) and cruise missiles are designed to evade the MDA's network of stationary ground-based and slow-moving sea-based radars dotted around the globe. By gliding or powering through the atmosphere against the warm background of Earth, the same missiles appear 10-15 times less luminous during the midcourse phase than the boost-phase, exoatmospheric objects that the MDA designed the Space-Based Infrared System (SBIRS) satellites to detect, according to Michael Griffin, the undersecretary of defense for research and engineering.

Closing those gaps will require serious investment. Despite plans to infuse more than $10 billion to field at least three different rocket-boosted HGVs by 2025 as offensive weapons, the Pentagon's financial commitment to field a defensive capability is not as clear.

The MDA, for example, submitted a fiscal 2020 budget request in February 2019 that included around $157 million in hypersonic defense. A month later, the agency submitted an unfunded-priorities list to Congress, asking for another $720 million for hypersonic interceptors and tracking sensors. Congress met the MDA more than halfway, adding $400 million to the final appropriations bill.

A similar shortfall then appeared in the MDA's fiscal 2021 budget request. The agency included $207 million for hypersonic defense but asked Congress to chip in another $224 million on top of the budgeted amount, according to a March report by the Center for Strategic and International Studies' (CSIS) Missile Defense Project.

Moreover, the Defense Department's long-range forecast for hypersonic defense spending shows an ambiguous commitment at best. The MDA plans to launch a competition to select a Regional Glide-Phase Weapon System (RGPWS) in fiscal 2021 but only if Congress approves the additional $224 million identified in the unfunded priorities list. At the same time, the new SDA plans to start demonstrating MDA's Hypersonic Ballistic Tracking and Surveillance System (HBTSS) alongside the SDA's own tracking layer in orbit.

But the unclassified version of the Future Years Defense Program, which details the Defense Department's five-year spending forecast, shows declining support for hypersonic defense after next year. If Congress approves the extra $224 million for MDA, hypersonic defense spending would peak at around $450 million next year, then average about $112 million annually from fiscal 2022 to 2025, according to the CSIS data. The implication seems clear: Despite the MDA's public commitment to a hypersonic defense system, the agency prefers to finance the development mainly by annual congressional add-ons.

Although the MDA's long-term funding plan for hypersonic defense is limited, the potential threats are no longer speculative. In December, the Russian government announced it had achieved operational status for the Avangard, a nuclear-tipped HGV launched by a modernized SS-19 intercontinental ballistic missile.

Two months earlier, Gen. Paul Selva, then-vice chairman of the Joint Chiefs of Staff, explained the implications of an adversary with a nuclear-armed HGV: Imagine if NATO attempted to blunt a move by Moscow to occupy a Baltic state, and Russian strategic forces responded by threatening to launch an Avangard missile. The now-retired general warned that a single Avangard could arc over the Arctic Ocean, and as it reached the northern tip of Hudson Bay, Canada, could change course. It could then veer to target the U.S. East Coast or strike the West Coast, Selva says. U.S. forces currently have no ability to deter or defend against such a capability.

To solve that problem, a new space-based tracking system is needed. The Pentagon's existing satellites are either looking for a more luminous signal than that of an HGV or a hypersonic cruise missile or are using a very narrow field-of-view sensor to minimize background clutter, says SDA Director Derek Tournear, who spoke with Aviation Week during a June 4 webinar.

The first attempt to solve that problem is scheduled for launch in fiscal 2024. Forty satellites in SDA's Tranche 1 constellation in low Earth orbit carry sensor payloads for tracking hypersonic missiles. Unlike the SBIRS or other space-based capabilities, the sensors will neither have a narrow field of view nor be optimized for tracking only during the boost or exoatmospheric phases of a missile's trajectory. Instead, the spacecraft in Tranche 1 will carry a wide-field-of-view infrared sensor.

“However, the jury is still out on whether [the sensors] will be able to form a track that is high enough quality to actually give you that fire control solution so that you can fire [interceptors] on [a] remote [track],” Tournear says.

The backup to the SDA sensor will be demonstrated under MDA's HBTSS program. The MDA is developing what Tournear calls a medium-field-of-view system, which falls between the narrow-field-of-view format of existing satellites and the SDA's wide-field-of-view design for Tranche 1. Ideally, the SDA's wide-field-of-view sensors will detect an HGV or a cruise missile and pass the data in orbit to the HBTSS sensors, which will then develop a target-quality track. That data will be passed down to interceptor batteries on the ground.

Modified interceptors, such as Terminal High-Altitude Area Defense, will augment new kinetic and non-kinetic options to shoot down hypersonic missiles. Credit: Missile Defense Agency

Within a few years, the SDA will find out how the concept works. By the end of 2022, eight Tranche 0 satellites equipped with the SDA's wide-field-of-view sensors should be in low Earth orbit. A year later, the MDA plans to launch two satellites into low Earth orbit with medium-field-of-view sensors. The Tranche 0 constellation—aided by 20 communications-relay and data-processing “transport” satellites—will provide a limited operational capability and validate that the sensors work as designed.

The next step comes in 2024, when the SDA plans to launch the 40 satellites in the Tranche 1 constellation. “We would have, in essence, regional persistence of [infrared satellites] over any area of the globe that we choose,” Tournear says. There is a catch, however. The launch of the Tranche 1 satellites in 2024 fall within the five-year spending plan but so far remain unfunded.

Shortly after the scheduled Tranche 1 layer is activated, the MDA plans to field RGPWS, the new interceptor optimized for HGVs. If Congress adds the funding, RGPWS could be fielded as early as the “mid-2020s” with the Navy's Mk. 41 vertical launch systems on ships and submarines, followed later by air- and land-launched versions. The design requirements for RGPWS are classified, but it's possible the interceptor may benefit from an ongoing DARPA program. Glide Breaker, which includes Aerojet Rocketdyne as a supplier, seeks to demonstrate a “critical enabling technology” for a hypersonic defense missile. The MDA also plans to demonstrate an “extreme power” microwave weapon against “very long-range” missile threats within two years.

At the same time, the MDA is adapting existing point defenses against atmospheric threats. Lockheed Martin is studying improved versions of the Terminal High-Altitude Area Defense system, called “Dart,” and of the Patriot, called “Valkyrie.” In addition to the extreme power microwave, Raytheon also is studying a new variant of the SM-3 called Hawk.

Editor's note: The article has been updated to correctly identify the names of the hypersonic defense concepts under study for THAAD and Patriot.

https://aviationweek.com/defense-space/missile-defense-weapons/us-hypersonic-defense-plan-emerges-not-cash

On the same subject

  • Jumping into algorithmic warfare: US Army aviation tightens kill chain with networked architecture

    September 9, 2019 | International, Aerospace

    Jumping into algorithmic warfare: US Army aviation tightens kill chain with networked architecture

    By: Jen Judson NAVAL AIR WEAPONS STATION CHINA LAKE, Calif. — In the skies above China Lake, California, from the back of an MH-47 Chinook cargo helicopter, an operator with a tablet takes control of a Gray Eagle drone and tasks it with firing a small, precision-glide munition at an enemy target located on the ground. But at the last second, a higher level threat is detected and the munition is rapidly redirected toward a different threat, eliminating it within seconds. This was made possible through the architecture, automation, autonomy and interfaces capability, or A3I, built by the Army's Future Vertical Lift Cross-Functional Team under Army Futures Command. The demonstration showed the ability to nimbly pass control between operators of unmanned systems and munitions through a networked architecture of systems also receiving and filtering real-time, pertinent information to aid in operational decision-making. “It was our first jump into algorithmic warfare,” Brig. Gen. Wally Rugen, who is in charge of the Army's FVL modernization effort, told Defense News following the demonstration. “We definitely didn't jump into the deep end of the pool, but we jumped in and, again, we are into pursuing that as far as we can take it to help soldiers be lethal.” The Aug. 26 demonstration sought to tighten the kill chain and allow for more advanced teaming between air assets and troops on the ground using a resilient network. “When you talk about our kill chain, we are trying to take seconds out of our kill chain,” Rugen said. “We feel like we understand the reverse kill chain — the enemy coming to get us. Our kill chain is going to get them, and we want our decision-making to be as precise and as expeditious as possible,” using automation and autonomy, he added. AI3 was developed over the course of nine months and culminated in the demonstration at China Lake. "Going from a concept, and in a matter of months putting it into an experiment: That was probably the most impressive thing, particularly if you look back at the history of how we do these,” James McPherson, the official performing the duties of the undersecretary of the Army, told Defense News. McPherson attended the demonstration to emphasize the importance to senior Army leadership of modernization efforts within the service. The FVL effort in particular includes ensuring manned, unmanned, munition and other air-launched effects are all seamlessly networked together to fight in advanced formations in a congested environment, such as an urban area, and that they are prepared to fight across multiple domains. Using an interface called Arbitrator, the service networked together a variety of targeting identification and rapid automated processing, exploitation and distribution, or PED, capabilities as well as real-time weather information and several other features and capabilities to help operators of unmanned systems penetrate, in the case of the demonstration, an urban environment. AI3 in action During the demo, one of the systems integrated into the network tied to a ground sensor detected a possible threat on the ground. Seeing the threat detected in the system, a helicopter pilot then gained control of an extended-range Gray Eagle and tasked it to perform reconnaissance of the possible target. Using the UAS, the pilot identified the threat as an enemy surface-to-air missile system. The pilot then ordered the UAS to fire a Dynetics GBU-69 small glide munition to defeat the target, marking the first time the munition had been fired from a Gray Eagle. But as the munition closed in on the target, the system picks up on another threat deemed more important for elimination. The information for this decision came from the integrated PED systems that use machine-learning algorithms to accurately identify items of interest. Another operator then redirected the munition during its final seconds of flight to hit the new, more pressing threat. Why does the Army need A31 capability? To build the system, the government took the lead integration role, Chief Warrant Officer 5 Cory Anderson, the UAS branch chief for Army Special Operations Aviation Command, said at the demonstration. This ensured the service's ability to get the right levels of interoperability between subsystems. But almost all of the capabilities tied into the government's black box came from small businesses and academia. Much of the initial development has come from the special operations side of the house. The demonstration was viewed from a tactical operations center, with screens lining the walls of a large air-conditioned trailer, but the system has a scalable control interface and can be remotely accessed from a cockpit or even a tablet used by a soldier on the ground. This breaks the Army free from having to use a ground control station, Anderson said, meaning the footprint and logistics tail can be drastically reduced. To put together the tactical operations center and ground control station, it took roughly seven C-17 planes to move heavy equipment into China Lake. “We can't sustain that,” Anderson said. “We believe we can get it down to a two C-17 load-out just by minimizing the generational requirements alone.” By integrating PED systems that use machine learning into A3I, the Army no longer requires a large number of people — roughly 30 at a time — to conduct PED from full-motion video. The Arbitrator system allows for operators to pass control of various systems back and forth at different levels of control, from just receiving information from a sensor or UAS to controlling a payload to the entire system. The system is also under development to improve its automation levels. The utility of passing control to a relevant operator not tied to a ground station means taking out the middle man that doesn't have the same advantageous access to the tactical edge another possible operator might have. Rugen said that if there's an operator on the ground close to the action, it's much easier to take control of systems rather than try to direct someone far away to the right location to get eyes on a possible point of interest or target in order to make an actionable decision. “What if the squad leader could just grab the sensor because we have the hierarchy?” Rugen noted. While the capability was developed and demonstrated by the FVL Cross-Functional Team, the system has applications for almost everything on the battlefield, from applications to long-range precision fires targeting capabilities to next-generation combat vehicle teaming to soldier systems. Both directors for the Long-Range Precision Fires and the Network cross-functional teams were present at the demonstration. While the unclassified version of the demo didn't show capability, the classified version addresses the architecture's capability to protect itself against threat-representative electronic attack. “We want to make sure we have a resilient network,” Rugen said. The next step is to move the Arbitrator system onto an airborne platform, which would completely eliminate the ground control station. That will be demonstrated in roughly a year. https://www.defensenews.com/land/2019/09/05/jumping-into-algorithmic-warfare-army-aviation-tightens-kill-chain-with-networked-architecture/

  • Le Rafale plus favori que jamais en Inde face au Super Hornet

    August 29, 2022 | International, Aerospace

    Le Rafale plus favori que jamais en Inde face au Super Hornet

  • Competition Heats Up For New Class Of Small, Disposable Jet Engines

    September 26, 2019 | International, Aerospace

    Competition Heats Up For New Class Of Small, Disposable Jet Engines

    bY Steve Trimble Two U.S. engine companies of vastly different sizes have revealed plans to compete against each other to offer small, low-cost jet engines for a new class of expendable unmanned aircraft systems (UAS) and future cruise missiles. Kratos Turbine Technologies, a newly acquired and rebranded division of the California-based aerial-targets manufacturer, has launched development of small turbofan and even smaller turbojet engine families in West Palm Beach, Florida. https://aviationweek.com/defense/competition-heats-new-class-small-disposable-jet-engines

All news