Back to news

April 6, 2022 | International, Naval, C4ISR, Security

The US Navy had cybersecurity wrong. Expect change.

'€œWe have 15 years of track record that proves that the current approach to cybersecurity, driven by a checklist mentality, is wrong,'€ says Aaron Weis, the service's chief information officer. '€œIt doesn't work.'€

https://www.defensenews.com/digital-show-dailies/navy-league/2022/04/05/us-navy-had-cybersecurity-wrong-expect-change/

On the same subject

  • L’alliance entre SDTS et SECAERO donne naissance à ARES (Advanced Redair European Squadron), un nouveau leader européen des services aériens de plastronnage et de simulation

    April 22, 2021 | International, Aerospace, C4ISR

    L’alliance entre SDTS et SECAERO donne naissance à ARES (Advanced Redair European Squadron), un nouveau leader européen des services aériens de plastronnage et de simulation

    Implantée sur l'aéroport de Nîmes-Garons, SDTS est spécialisée dans l'entraînement opérationnel et les missions de type « REDAIR – Aggressor Squadron ». Entreprise partenaire notamment de la Marine nationale, elle dispose d'une flotte de 9 avions MB-339 (Aermacchi) auxquels s'ajoutent un Cessna et un ULM. Quant à SECAERO, l'entreprise est domiciliée sur l'aérodrome de Valence-Chabeuil, et spécialisée dans la maintenance, la modernisation d'avions et d'hélicoptères, et la formation des mécaniciens. Sa flotte est composée de neuf MB-339 (Aermacchi), Cessna 337, un CTSW (ULM), deux hélicoptères Merlin (Agusta Westland Leonardo) en location. La nouvelle entreprise sera spécialisée dans l'entraînement aérien opérationnel de type REDAIR ou ADAIR pour Adversary Air Services, la maintenance aéronautique de type MRO/MCO, le développement et la fabrication d'équipements optroniques. ARES affiche ses ambitions dans son communiqué de presse « ARES projette d'investir, en liaison avec le constructeur Dassault-Aviation, le motoriste Safran et l'équipementier Thales, dans la modernisation de sa flotte avec des Mirage 2000, avions de 4e génération, supersoniques équipés de radar, pour répondre et s'adapter avec le plus haut niveau de réalisme aux besoins d'entrainement opérationnel grandissants des Forces armées françaises et européennes ». Lignes de défense, 22 avril

  • US Spies Want to Know How to Spot Compromised AI

    December 31, 2018 | International, C4ISR

    US Spies Want to Know How to Spot Compromised AI

    BY DAVE GERSHGORN What if you were training an AI, and an adversary slipped a few altered images into its study set? The US government's research arm for intelligence organizations, IARPA, is looking for ideas on how to detect “Trojan” attacks on artificial intelligence, according to government procurement documents. Here's the problem the agency wants to solve: At a simple level, modern image-recognition AI learns from analyzing many images of an object. If you want to train an algorithm to detect pictures of a road signs, you have to supply it with pictures of different signs from all different angles. The algorithm learns the relationships between the pixels of the images, and how the structures and patterns of stop signs differ from those of speed-limit signs. But suppose that, during the AI-training phase, an adversary slipped a few extra images (Trojan horses) into your speed-limit-sign detector, ones showing stop signs with sticky notes on them. Now, if the adversary wants to trick your AI in the real world into thinking a stop sign is a speed-limit sign, it just has to put a sticky note on it. Imagine this in the world of autonomous cars; it could be a nightmare scenario. The kinds of tools that IARPA (Intelligence Advanced Research Projects Activity) wants would be able to detect issues or anomalies after the algorithm has been trained to recognize different objects in images. This isn't the only kind of attack on AI that's possible. Security researchers have also warned about inherent flaws in the way artificial intelligence perceives the world, making it possible to alter physical objects like stop signs to make AI algorithms miscategorize them without ever messing with how it was trained, called “adversarial examples.” While neither Trojan attacks nor the adversarial examples are known to have been used by malicious parties in the real world, researchers have said they're increasingly possible. IARPA is looking at a short timeline as well, expecting the program to conclude after a maximum of two years. https://www.defenseone.com/technology/2018/12/us-spies-want-know-how-spot-compromised-ai/153826

  • Six NATO countries sign agreement to collaborate on next-gen helo

    June 17, 2022 | International, Aerospace

    Six NATO countries sign agreement to collaborate on next-gen helo

    Six NATO nations signed an agreement to collectively develop concepts for a future helicopter in Brussels on June 16.

All news