Back to news

June 28, 2018 | International, C4ISR

The new cyber leader focused on national defense

By:

Air Force Brig. Gen. Timothy Haugh has assumed command of U.S. Cyber Command's Cyber National Mission Force.

As one of CYBERCOM's four main headquarters elements, the CNMF is in charge of deterring and disrupting cyberspace operations to defend the nation. CNMF components include cyber support teams that provide intelligence support, cyber protection teams that specialize in defending the Department of Defense Information Network, and national mission teams that help protect the DoDIN and, when ordered, other U.S. cyberspace. NMTs are also aligned against specific nation-state actors.

With potential changes to the construct of CYBERCOM's cyber teams writ large, some have indicated that the CNMF construct is a good model.

“The way the Cyber National Mission Force is organized, having ... mission teams, support teams and CPTs, that is an ideal construct for doing full-spectrum operations,” Brig. Gen. Maria Barrett, who formerly served as deputy of operations at CYBERCOM, said.

Senators have previously pushed CYBERCOM to be more aggressive in using NMTs to deter malicious cyber activities in the U.S., particularly those conducted by Russia.

“With the authority or the direction of the president of the United States national mission teams can disrupt these attacks at the point of origin, is that correct?” Sen. Jack Reed, D-R.I., asked during a February congressional hearing.

While they could be tasked to do that, the former commander of CYBERCOM, Adm. Michael Rogers, was careful to say it depends on specifics not wanting to overpromise.

Haugh, who took over June 4, was most recently the director of intelligence at CYBERCOM.

Previous holders of this role include Gen. Paul Nakasone, who is now the commander of CYBECOM and director of the NSA, as well as most recently Vice Adm. Timothy White, who now commands 10th Fleet/Fleet Cyber Command.

https://www.fifthdomain.com/dod/cybercom/2018/06/27/the-new-cyber-leader-that-could-help-stop-malicious-activities/

On the same subject

  • US Army begins experimenting with new network tools

    July 28, 2020 | International, C4ISR

    US Army begins experimenting with new network tools

    Andrew Eversden WASHINGTON — The U.S. Army's combat capabilities development team kicked off a monthslong experiment last week to test emerging technologies that could be added into the service's tactical network. The third annual Network Modernization Experiment at Joint Base McGuire-Dix-Lakehurst in New Jersey started July 20 and ends Oct. 2. NetModX provides an opportunity for the Combat Capabilities Development Command's C5ISR Center — or Command, Control, Communication, Computers, Cyber, Intelligence, Surveillance, and Reconnaissance Center — to perform field tests with emerging capabilities that have largely been tested in the lab. Field tests with simulated threat environments, as opposed to lab tests, are important because technologies react in unexpected ways due to realities like different types of trees or terrain. This year's theme for NetModX is mission command and command-post survivability, which means participants will focus on technologies that could be fielded in the Army's Integrated Tactical Network Capability Set '23 and Capability Set '25 — future iterations of network tools that the Army plans to deliver to soldiers every two years. In this year's test, the C5ISR Center is testing communications capabilities that allow for distributed mission command systems across the battlefield “and wider area,” said Michael Brownfield, chief of the future capabilities office at the C5ISR Center. “We've learned by watching our enemies fight, and we know that to survive on the battlefield, No. 1, they can't be able to see us,” Brownfield told C4ISRNET in an interview. “And No. 2, we have to distribute our systems across the battlefield to give them multiple targets and multiple dilemmas in order to survive.” NetModX is also testing network resiliency capabilities that could be delivered as part of Capability Set '23. Preliminary design review for the capability set is scheduled for April next year. To test the effectiveness of the resiliency projects the center developed in the lab, the C5ISR Center created a “state-of-the-art red cell” that attacks the network using enemy's tactics, techniques and procedures, according to Brownfield. The goal is to make sure the technology can withstand electronic attacks and allow for continuous operations in contested environments when in the hands of deployed soldiers. “What resiliency means to us is the network bends, it doesn't break,” Brownfield said. “And the commanders have the information they need and the coordination that they need to fight the battle.” A modular radio frequency system of systems is undergoing tests, and Brownfield says it will “revolutionize” the fight on the battlefield. The system automatically switches between primary, alternate, contingency and emergency, or PACE, radios by sensing if radio frequencies are being jammed. The system then responds by automatically switching radio channels to allow for seamless communications in a contested environment. Currently, “it's kind of hard to switch to alternate comms when the person you're talking to is on their primary, not their alternative comms,” Brownfield said. “And the process is very slow. It's human-driven.” Now, the automatic PACE system senses the environment in milliseconds, he said. At last year's experiment, which focused on network transport capabilities to support precision fires for multidomain operations, the center experimented with radios that could flip to new channels on their own, while launching brute force and other more sophisticated attacks against the radios to see how much stress they could handle before passing data became impossible. This year will be a little different. “This year, we're pairing different radios together and see how they can work to actually change the type of modulation schemes that we use to maneuver in cyberspace around for continuous operations while under enemy attack and under contested electronic warfare conditions,” Brownfield said. One of the top priorities for this year's experiment is allowing for projects leaders to bring their technology into to the field, no matter what stage of development they are in, to be tested in an “operationally relevant environment,” Brownfield said. The team then collects data on how the technology performs and puts it into a database where it can be queried to answer specific performance questions. “So we can ... ask the database questions like, ‘What was my latency with these two radios at this point in time,' and start to understand the true metrics of how the systems performed in the field,” Joshua Fischer, acting chief of systems engineering, architecture, modeling and simulation at the C5ISR Center, told C4ISRNET. He added that those involved are also looking at network throughput. https://www.c4isrnet.com/yahoo-syndication/2020/07/24/us-army-begins-experimenting-with-new-network-tools/

  • Extending Field of View in Advanced Imaging Systems

    August 12, 2019 | International, C4ISR

    Extending Field of View in Advanced Imaging Systems

    New program focuses on developing curved infrared focal plane arrays to improve optical performance and widen field of view while reducing system size of military imagers The military relies on advanced imaging systems for a number of critical capabilities and applications – from Intelligence, Surveillance, and Reconnaissance (ISR) and situational awareness to weapon sights. These powerful systems enable defense users to capture and analyze visual data, providing key insights both on and off the battlefield. Today, nearly all imaging systems rely on detector arrays fabricated using planar processes developed for electronic integrated circuits on flat silicon. While significant progress has been made in advancing these technologies for narrow field of view (FOV) systems, optical aberrations can limit the performance at the periphery in wide FOV systems that then require large, costly, and complex optics to correct. The trade-off for correcting optical aberrations by using large, heavy lenses is a reduction in optical signal and a large size penalty, which limits their use for new and emerging capabilities. “Tremendous progress has been made over the past 20 years towards making multi-megapixel infrared (IR) focal plane arrays (FPA) for imaging systems cost effective and available to the Department of Defense,” said Dr. Whitney Mason, a program manager in DARPA's Microsystems Technology Office (MTO). “However, limitations to the technology's performance and size remain. Current advances on the commercial side have shown the viability of small area, curved FPAs (CFPAs) for visible cameras. While these technologies have shown modest benefits, more must be done to achieve the performance and size requirements needed for imaging systems used in emerging defense applications.” DARPA developed the FOcal arrays for Curved Infrared Imagers (FOCII) program to expand upon the current commercial trend for visible sensor arrays by extending the capability to both large and medium format midwave (MWIR) and/or longwave (LWIR) infrared detectors. The program seeks to develop and demonstrate technologies for curving existing state-of-the-art large format, high performance IR FPAs to a small radius of curvature (ROC) to maximize performance, as well as curve smaller format FPAs to an extreme ROC to enable the smallest form factors possible while maintaining exquisite performance. FOCII will address this challenge through two approaches to fabricating a curved FPA. The first involves curving existing state-of-the-art FPAs, while keeping the underlying design intact. The focus of the research will be on achieving significant performance improvements over existing, flat FPAs, with a target radius of curvature of 70mm. The fundamental challenge researchers will work to address within this approach is to mitigate the mechanical strain created by curving the FPGA, particularly in silicon, which is very brittle. The second approach will focus on achieving an extreme ROC of 12.5 mm to enable a transformative reduction in the size and weight compared to current imagers. Unlike the first approach, researchers will explore possible modifications to the underlying design, including physical modifications to the silicon that could relieve or eliminate stress on the material and allow for creating the desired curvature in a smaller sized FPA. This approach will also require new methods to counter the effects of any modifications during image reconstruction in the underlying read-out integrated circuit (ROIC) algorithm. The FOCII program is hosting a proposers' day on August 13, 2019 at the Executive Conference Center, 4075 Wilson Blvd., Suite 300, Arlington, Virginia, 22203 from 9:00 a.m. to 4:00 p.m. EDT. The purpose of this meeting is to provide information on the FOCII program, promote additional discussion on this topic, address questions from potential proposers, and provide an opportunity for potential proposers to share their capabilities and ideas for teaming arrangements. The Special Notice for can be found here, https://www.fbo.gov/index.php?s=opportunity&mode=form&id=4c8a360d1f5be2e1b7e784f86b7d42fb&tab=core&_cview=0 Full details are available in the FOCII Broad Agency Announcement on FBO.gov: https://go.usa.gov/xV3EH. https://www.darpa.mil/news-events/2019-08-09

  • None

    March 8, 2021 | International, Aerospace

    None

    The US Air Force Life Cycle Management Center (AFLCMC) has announced that key communication upgrades are being delivered to the E-4B fleet.

All news