Back to news

October 8, 2020 | International, C4ISR

SpaceX awarded contract to build US military tracking satellites

JORDAN WILLIAMS

Elon Musk's SpaceX is one of two companies to be awarded a $149 million contract from the Space Development Agency to develop missile-tracking satellites for the U.S.

SpaceX and defense contractor L3 Harris were chosen to build the satellites as part of the National Defense Space Architecture's Trache 0, which will include 20 transport layer satellites and 8 tracking satellites. L3 Harris received $193 million from the agency to build its satellites.

The companies will build four overhead persistent infrared imaging (OPIR) satellites of their own design that must be able to track missiles and communicate directly with transport layer satellites. Those satellites are currently being developed by Lockheed Martin and York Space Systems under separate contracts.

SpaceX will be developing its satellites around an infrared sensor with a wide field of view, Space Development Agency Director Derek Tournear told SpaceNews. The company plans to build the satellite based on its Starlink satellite, but will have the OIPR sensor come from another supplier.

The satellites should be ready by the end of fiscal 2022.

SpaceX on Tuesday launched 60 new Starlink satellites at the Kennedy Space Center in Florida.

https://thehill.com/policy/defense/519964-spacex-awarded-contract-to-build-us-military-tracking-satellites

On the same subject

  • Britain plans to boost nuclear workforce

    March 25, 2024 | International, Land

    Britain plans to boost nuclear workforce

  • Carderock Uses High-Fidelity Signature Simulation to Train Surface Combat Systems

    August 5, 2019 | International, C4ISR

    Carderock Uses High-Fidelity Signature Simulation to Train Surface Combat Systems

    By Benjamin McNight III, Naval Surface Warfare Center, Carderock Division Public Affairs WEST BETHESDA, Md. (NNS) -- In the world of simulations, getting a system to act as close to authentic as the real-world situations it represents is always the main goal. Naval Surface Warfare Center (NSWC), Carderock Division develops high-fidelity acoustic simulation and training systems, giving naval personnel the ability to practice combat scenarios virtually. The Combined Integrated Air and Missile Defense (IAMD) and Anti-Submarine Warfare (ASW) Trainer, better known as CIAT, made its official debut in December 2018 at Naval Base San Diego. In June, Naval Station Norfolk became the site for another CIAT installation. Motions to create this trainer began in 2014, according to Rich Loeffler, Carderock's senior scientific technical manager, director for signatures, tactical decision aids and training systems (Code 705). “CIAT is what we refer to as a Combat Systems Team Trainer,” Loeffler said. “Meaning that your goal is to bring in the whole portion of the crew that would be operating the combat system and train them in a shore site how they can best utilize the system when they are at sea.” Carderock shares CIAT responsibilities with NSWC Dahlgren Division. Dahlgren is responsible for the overall system integration and manages the IAMD aspect of the trainer, while Carderock leads the development of the acoustic and ASW capabilities. Carderock also has capabilities that contribute to the IAMD training. Using the periscope simulation that creates a real-time visual simulation of what one could see through the periscope of a submarine, Loeffler said they were able to utilize that technology for the surface ship trainer in the CIAT. “In this case, they have deck cameras if they want to be able to see when a missile launches from the forward or aft launchers. We basically provide the visuals for that,” he said. By modeling the threats and the ocean environment and then stimulating the actual tactical combat system software, the CIAT system is highly flexible in the ability to train real-world scenarios. With the many possibilities of training situations that can be created within the CIAT comes the need to use multiple sources of knowledge to create effective training situations that will benefit the fleet. “We'll work with people like the Office of Naval Intelligence to get threat intelligence data, we'll work with folks like the Naval Oceanographic Office to get the latest environmental models and databases, and then we'll work with the tactical programs themselves to get the tactical software,” Loeffler said. “Our role here at Carderock has been to leverage signature simulation capabilities we have developed over the years across submarine, surface and surveillance ASW trainers and provide the system design, development, integration and testing support to implement the CIAT requirement to support the fleet's training needs,” he said. Before the CIAT existed, the Surface ASW Synthetic Trainer (SAST) was developed by Carderock as an on-board embedded training system within the AN/SQQ-89 A(V)15 Sonar system. Loeffler said beginning in 2008, they went through a series of large analyses to compare and contrast what the simulation produced with what operators saw at sea. The data from that testing helped further develop the SAST and subsequently create the CIAT. Now, they are able to represent all components of the operations they run from the physics modeling perspective, such as what sounds are generated and how they propagate through the water, interactions with interfering objects and sea-state effects on these variables. “Since we're acoustically stimulating the actual tactical software of the sonar system, the users are operating the systems just as they would at sea,” he said. Loeffler believes that there is not anything off limits for what the CIAT can do, but adapting with new threats will require the right development within the trainer to represent the real-world situation. Although the system is relatively new, discussions on the next steps in the development of the trainer are already taking place with the help of Center for Surface Combat Systems (CSCS) defining and prioritizing fleet training requirements “CSCS is basically the primary stakeholder that owns the surface-ship training schoolhouses, and they've done their requirements review to see what additional capabilities they'd like to see in the next version of CIAT,” Loeffler said. “So, we're going through that process, assessing those requirements and looking for what would go into the next version to further improve training and also address training of the new combat system capabilities as they are being introduced into the fleet.” https://www.navy.mil/submit/display.asp?story_id=110471

  • “A bumpy ride” for cybersecurity as AI poses new threats – GlobalData report - Army Technology

    May 2, 2024 | International, Security

    “A bumpy ride” for cybersecurity as AI poses new threats – GlobalData report - Army Technology

    GlobalData's report notes that AI-led attacks are changing cybersecurity, with businesses facing challenges exacerbated by talent shortages.

All news