Back to news

August 28, 2018 | International, C4ISR

SOCOM seeking technologies for war in a post-cyberpunk era

By:

The great trick of computers is that they enable people to be more than human. In a new request for information, the United States Special Operations Command is looking for a range of computer and computer-enabled technologies, all designed to make Special Operators function in some way more than human. These technologies range from sensors to nano-drones to biomedical performance enhancements.

Taken together, the list of desired capabilities is a preview of what may be possible in the near-future to shape the intimate fights on the edges of wars. Miniature robot scouts, hyper-aware data collection and monitoring riding along low-bandwidth nodes, tailorable hyperspectral imaging sensors, biometric tracking resistance, and go-pills without adverse effects are all on asking, and that's just a handful of the dozens of capabilities sought.

The full request for information is available online. To parse through it, here are some of the standout categories.

Robots, blood-transporting robots

How many pounds of blood is a reasonable amount of blood for a robot to carry?

Ten pounds, answers the SOCOM request. Specifically, SOCOM is looking for an unmanned aerial blood delivery system that can do vertical takeoff and landing (VTOL), or at least operate without a runway. The 10 pound requirement is a minimum, and roughly approximate to the amount of blood in a person weighing 150 pounds. In order for the blood to be useful, it has to be kept between 35-46 degrees Fahrenheit, ideally through passive means, all the way from loading through transit, delivery, and unloading. That unloading should “minimize shock to the payload for any proposed delivery concept,” because again, this is about making a robot that can deliver blood in a useful and life-saving state.

Blood transport drones already exist, and have safely demonstrated blood transport in small amounts and over modest distances. SOCOM wants a blood drone that can transport its cargo over 100 miles and back, while staying in contact and control of human operators.

That's an ambitious ask, and it's one of just five named categories of drone technology sought by SOCOM.

Another is a platform-agnostic desire for an expeditionary ISR platform, which can operate as individuals, in pairs, or in meshed swarms. These drones will have modular payloads, carry at least two sensors, and require minimum logistics support. One asked-for way to sustain these drones is by “alternative power through environment,” like directly sipping power from power lines or incorporating a way to charge off renewable energy.

The other three categories of drone are ambitious, though in more familiar terms. There's a listing for a Nano VTOL drone, with a takeoff weight of 2.6 ounces that can fly autonomously inside and avoid collisions, with a human monitoring but not directly piloting the drone. Ten times the size is the Micro VTOL drone, at about 1.6 pounds, capability of all-weather an autonomous flight, and able to operate both without GPS and in caves. The biggest non-blood-carrying drone SOCOM is looking for is a hand-launched or fixed-wing VTOL vehicle that can be recovered without special equipment, will weigh no more than 7.8 pounds, and can fly for at least 90 minutes at sea level.

These drones are familiar machines, mostly, even if some of the payloads are a little unusual. Sensors in a robot are common enough. SOCOM is also looking for a way to increase the sensors carried and used by a person on foot.

Hyper-sensors

Collecting information is nothing without processing it into a useful form, and this SOCOM RFI seeks information on both. While the specific means are not detailed, there's a desire for “edge computing” to “derive useful information at the point of collection through sensor fusion and forwards processing without reliance on high bandwidth, long haul communications.” That likely means computers and AI already in the field and embedded in equipment carried by the special operations forces. Making that information intelligible is one task a Heads Up Display (HUD), but SOCOM is also open to audio cues and haptic feedback, among other means, for relaying processed information in a useful and immediate form.

Collecting that information will be a new suite of Intelligence, Surveillance, and Reconnaissance (ISR) sensors, designed with the limitations and hard conditions of present and future special operations missions in mind. That means working without “owning the air domain,” a break from decades of assumptions for conventional and counter-insurgent warfare, but a break that acknowledges the likely presence of cheap drones on all sides of future battles. These sensors will include visual spectrum, infrared, hyper-spectral imaging, LIDAR, electronic warfare, can operate autonomously and be mounted on drones or scattered on the ground to work and transmit data remotely.

For good measure, SOCOM is also asking for technologies that would allow drones to work as something like a universal translator even in denied connectivity environments. With linguistic expertise, regional dialects, demographic information and cultural sensitivities programmed in, the drones will do the fraught social massaging around war. If there is anything that will convince a local population about the right intentions of the people presently fighting nearby, it's a robot that's hip to the local slang.

More than human

All this collecting and transmitting information is likely to produce a host of signals, so SOCOM is also looking for technologies that “help avoid physical detection by acoustic, thermal, radar, visual, optical, electromagnetic, virtual, and near infrared means.” Finding a way to remain discreet in an information rich environment is a challenge for everyone in society today, one tacitly acknowledged by an ask for a technology to “help manage digital presence within the realm of social media.” (Step 1 for that is probably not using a jogging app with geolocation turned on.)

Biometric technologies (think: facial recognition, etc) are often seen as a tool of the powerful, wielded by governments against vulnerable populations. While they certainly can be that, they can also pose a challenge to individuals in the employ of one military trying to evade the sensors used by another. To that end, SOCOM is looking for technologies that provide resistance to biometric tracking. (While it's not specified, Juggalo-style face paint might work for this exact purpose).

Finally, once a special operator has evaded detection, used the sensors on hand, and has an adequate amount of robot-delivered blood to keep going, there is an interest in human performance and biomedical enhancements. These include drugs and biologics that can enhance cognitive performance, increase “peak performance sustainability, including increased endurance, strength, energy, agility, and enhanced senses” and a whole other wish list of capabilities that officers from time immemorial have demanded of the people under their command. Most promising, perhaps, is the ask for “medical sensors and devices that provide vital sign awareness and send alerts,” and “austere trauma treatment,” both of which don't require transformative properties in the people using them.

Science fan-fiction

It's too early to say how many of the asks in this RFI are realistic, though some are already delivered technologies and others certainly seem near-future plausible. More importantly, the request as a gestalt whole suggests a desire for people that are more than human, and capable of performing everything asked of them in remote battlefields, far from home. As the United States approaches its 17th continuous year of war abroad, asking that science deliver what science fiction promised feels at least as plausible as imagining a future where deployments abroad are scaled back.

https://www.c4isrnet.com/unmanned/2018/08/28/socom-seeking-technologies-for-war-in-a-post-cyberpunk-era

On the same subject

  • Bundeswehr orders upgrade of 143 Puma Infantry Fighting Vehicles

    April 19, 2023 | International, Land

    Bundeswehr orders upgrade of 143 Puma Infantry Fighting Vehicles

    The German government is exercising two options contained in the contract for retrofitting original Puma infantry fighting vehicles to the new S1 design status.

  • European Missile Research Paves Way For Collaborative Weaponry

    October 29, 2019 | International, Aerospace

    European Missile Research Paves Way For Collaborative Weaponry

    By Tony Osborne Future conflicts will require weapons that can adapt to different target sets and collaborate to hit harder. As several European nations gear up to begin the development of advanced new combat aircraft, such as the Franco/German/Spanish Future Combat Air System and the British-led Tempest project, and invest in long-range ground-based weaponry, European missile manufacturer MBDA has begun focusing its research programs on delivering these advanced capabilities. The Anglo-French Materials and Components for Missiles Innovation and Technology Partnership (MCM-ITP), led by MBDA and sponsored by the French and UK defense ministries to the tune of €13 million ($14.5 million) a year, has been developing technologies over the last 11 years to help increase the performance and lower the cost of MBDA's British and French weapons. Small to midsize enterprises (SME) and academia have participated in the program, validating technologies with more than 200 projects in eight research domains ranging from rocket propulsion to seekers and fusing, developing them up to a technology readiness level (TRL) of 4. The research program has assisted in development of the French Mica NG air-to-air missile, supporting a small active, electronically scanned array radar module for the seeker of the radar-guided version, while the Spear 3, a network-enabled guided missile being developed in the UK will use a wire-free architecture. In addition, as the Spear 3 family of weapons broadens in the future, it will use an adaptive control system. The ITP is beginning to look at technologies that can speed up the engagement chain, adapt warheads for different kinds of targets and even develop lower-cost air-breathing engines for new families of so-called remote carriers—the attritable unmanned air systems that will support future combat aircraft into theater. “We know that collaborative weapons would be a big advantage to defeat air defenses, but how we do that has not yet been quantified,” says Olivier Lucas, MBDA's director of Future Systems, speaking to Aviation Week at the MCM-ITP Conference in Birmingham, England, on Oct. 15. “We need to demonstrate the benefits you can get from these networked weapons through operational analysis,” he adds. To make collaborative weapons work, Lucas says there will need to be developments in low-cost data links to connect them, and then algorithms that can take advantage of the cooperation and ensure all these systems can still work together in environments where navigation and communication signals could be degraded. Industry has already proved it can make UAVs collaborate and swarm in formations, but as Lucas points out, this is usually done with the aid of satellite-based global positioning systems. The military is unlikely to enjoy such a luxury in a high-end conflict. All four global navigation satellite systems (GNSS)—the U.S. Global Positioning System (GPS), Europe's Galileo, Russia's Glonass and China's BeiDou—work around similar frequencies and could be easily jammed. Weapons such as cruise missiles can already operate without GNSS by relying on inertial navigation systems (INS), or if flying over land they can recognize landscapes based on internal terrain databases. But what if a considerable part of their flight is over water, where there are no landmarks? As part of the MCM-ITP, a team from MBDA, Airbus Defense and Space and French aerospace research agency ONERA have developed a means of correcting INS drift using satellite communication signals. The Resilient and Autonomous Satcom Navigation (Reason) system gives the weapon an alternative measurement signal. Many military communication satellites already have the capability of geolocating interference. Using the signals to provide navigation updates employs a reverse of that process, say engineers. They have already proved the theory by linking an INS fitted to a 4 X 4 vehicle that took signals from two of the UK's SkyNet communication satellites and compared the INS track with that of GPS, noting small deviations from course. The team believes the Reason technology will be valuable for future generations of long-range cruise missiles and anti-ship missiles such as the Anglo-French Future Cruise/Anti-Ship Weapon, currently in a concept phase. Another MCM-ITP project is looking at using artificial intelligence (AI) and a process called deep reinforcement, learning to better understand the levels of autonomy that might be needed in the engagement chain. The Human Machine Teaming (HUMAT) project considers the growing complexity and capability of modern missiles and the increasing amounts of data being collected by multilayered intelligence systems. It recognizes that human operators may need to be supported in their analysis and prioritization of threats by artificial intelligence. The two year-long program, started in November 2017, has studied different elements of the engagement chain, as well as the ethical, legal and technological constraints, with the aim of creating “robust engagement decision-making,” and “effective transfer of task responsibilities between the human operator and the machine.” The HUMAT system has benefits for the weapon command-and-control systems, particularly air-to-surface attack, but also multilayered air defense systems, say MBDA engineers. “We have to understand the information we will share with the weapons, what will be split, what is planned and what decisions are left to the group of weapons,” says Lucas. “This process has to be tuned, you can either program the trajectory of each weapon or tell the weapons: ‘Here are your targets, now do your best,'” he says. Collaborative weapons will also need to feature additional low-cost sensors to help them make their targeting decisions, including those that understand radar signal and resolution, so that the most appropriate weapon can be selected to hit a particular target successfully. Mission planning is also being addressed. MBDA engineers and academics from Queen Mary University of London have been exploring the use of deep-learning techniques to speed up the targeting process for weapons such as cruise missiles. Current air-launched cruise missiles such as MBDA's Storm Shadow/SCALP family use an imaging infrared sensor and autonomous target recognition system in the terminal phase of flight. But to recognize the target, a 3D model needs to be developed as part of the mission planning process. This process can be laborious and time-consuming, so engineers have been studying ways to create the models using satellite imagery. Using deep-learning techniques, the system has been fed thousands of daylight and infrared satellite images taken in different conditions at different times of the day. The Fast Targeting algorithms have learned how to match images with the target area despite various geometric and radiometric distortions, allowing a 3D model of the target to be built much faster. The idea is to make such weapons much more flexible and pave the way for them to be used against time-sensitive targets. Lucas says such technologies will help address the issues associated with combat mass, dealing with the challenge of fewer platforms, so the same weapons will have to be adaptable for different missions and targets. “In recent conflicts in Libya and Syria, weapons could not be used to their full effectiveness, because they were too powerful, and there was a risk of collateral damage,” says Lucas. Operators will be able to program future weapons to scale the warhead's effects up or down to deal with different targets and environments, he suggests. Other projects in the MCM-ITP are developing lethality models for different types of targets, including aircraft, ships and structures. Replacing metal parts in warheads with reactive materials could result in more efficient and increased lethality, and if combined with additive manufacturing techniques warhead costs could also be reduced, say engineers. Additive manufacturing processes could lead to new designs for penetrator warheads in particular. Engineers from MBDA and SMEs Impetus Afea and Fluid Gravity Engineering have developed a 3D penetrator warhead case with a smaller mass than the thick casings usually produced through casting. Using the 3D-printed case means less energy is lost during warhead detonation than with the older cast penetrator. Testing has proved the 3D-printed casing can match the survivability of the thicker casing, and reduced collateral effects can also be achieved, MBDA says. The company is now looking to evolve the MCM-ITP to deal with new technologies that may cut across the eight domains of research, with the addition of a new ninth, open-challenge domain that will be more flexible for future program needs. A name change is also in the offing, with MCM-ITP being renamed the Complex Weapons Innovation and Technology Partnership (CW-ITP) from early next year. https://aviationweek.com/defense/european-missile-research-paves-way-collaborative-weaponry

  • The Army wants a better way to update software, buy smarter

    June 15, 2018 | International, C4ISR

    The Army wants a better way to update software, buy smarter

    By: Mark Pomerleau The Army is holding what it calls software solariums as a way to improve the business side of the service's multi-billion software efforts during the life of programs. “Software has become both a critically important element to readiness and a critically under-managed element of our capability portfolio,” Maj. Gen. Randy Taylor, commander of Communications and Electronics Command, said at the event held May 22-23. “Cohesive software management is a necessary enabler to maintaining overmatch in the multi-domain battle.” Providing software updates to units in austere field locations can be challenging. Prolonging such updates can make the systems they run on vulnerable. The Army has sought to develop new and innovative ways for automated software updates to these units. As the Army is also undergoing major IT modernization, both to its tactical and enterprise networks, software becomes a critical enabler in that future end state. “I believe that we are literally in the midst of the largest modernization of our networks,” Lt. Gen. Bruce Crawford, the Army CIO who began the software solariums as commander of CECOM, said at the recent event. “And that's all of our networks, from the tactical to the enterprise, to the business to the intelligence systems in the last 30 years.” With these modernization efforts, the Army realizes it must be better stewards of overall software costs. “We've got to be more holistic on how we approach this, especially when you consider that we, the U.S. taxpayer, spend 55 to 70 percent of a program's lifecycle on that post-acquisition and post-operations sustainment. That's a pretty big bill,” Taylor said. During a March conference, Crawford noted the service spends about $3 billion over a five year period on enterprise software sustainment. The previous solariums, officials said, have included new patching solutions and a goal to have no more than two fielded software baselines at any one time for all programs of record. Army leaders said CECOM will coordinate with stakeholders to finalize recommendations in the coming months. Those goals then will be submitted to the Army level Information Technology Oversight Council for approval and implementation. https://www.c4isrnet.com/it-networks/2018/06/14/the-army-wants-a-better-way-to-update-software-buy-smarter/

All news