Back to news

March 4, 2020 | International, Aerospace, Naval, Land, C4ISR, Security

Qatar cancels major defense trade conference as coronavirus fears spread

By: David B. Larter

WASHINGTON — The Qatari government announced March 3 that the Doha International Maritime Defence Exhibition and Conference, or DIMDEX, is now canceled as the region combats the spread of the new coronavirus known as COVID-19.

DIMDEX is among the first major defense trade shows canceled as the virus has shown signs of community spread in the Arabian Gulf region, though several high-profile companies pulled out of the Singapore Airshow due to virus fears.

The biannual event, hosted by Qatar's armed forces, in 2018 hosted about 13,000 attendees, according to a news release. The announcement was made on the DIMDEX website.

“Following the cancellation of a number of global events including the Mobile World Conference in Spain, ITB in Germany and the Geneva International Auto Show, the DIMDEX 2020 organising committee has been consulting with public health officials and the Government of the State of Qatar regarding the status of the event,” the announcement read.

“Though the risk to the general public in Qatar remains low, our primary concern remains the health and welfare of all residents and visitors to Qatar and for this reason the event will no longer be held,” it added.

The number of cases of COVID-19 in Qatar stood at three, as of March 2, according to the World Health Organization, but there have been about 1,000 cases in Iran. In the United Arab Emirates, the WHO has determined that, while the number of cases is just about 20, the virus appears to be spreading in the community.

Bahrain and Kuwait have about 50 cases each, while Iraq has about 20.

https://www.defensenews.com/global/mideast-africa/2020/03/03/qatar-cancels-major-defense-trade-conference-as-coronavirus-fears-spread/

On the same subject

  • 3-D Scanning Technology Makes Splash at NNSY Thanks to Partnership with Puget Sound

    August 1, 2019 | International, Naval

    3-D Scanning Technology Makes Splash at NNSY Thanks to Partnership with Puget Sound

    By Kristi Britt, Public Affairs Specialist, PORTSMOUTH, Va (NNS) -- Although they have only worked at Norfolk Naval Shipyard (NNSY) for less than 10 months, two employees are already involved in the future of innovative technologies in America's Shipyard. Code 268 Engineering Technician Jason Ewick and Code 2340 Assist Shift Test Engineer (ASTE) Joey Hoellerich were brought into the NNSY Technology and Innovation (T&I) Lab, a group dedicated to bringing the real ideas and technologies of the shipyard to the forefront. With their arrival to the team, both were given the unique opportunity to share knowledge with Puget Sound Naval Shipyard and Intermediate Maintenance Facility (PSNS&IMF), using laser scanning to provide accurate measurements for shipboard work. “The USS Dwight D. Eisenhower (CVN 69) was at NNSY in years past, Naval Air Systems Command (NAVAIR) brought Puget Sound representatives to our shipyard to use their laser scanning technology to cut off all added material from four sponsons onboard the vessel,” said NNSY T&I Lab Lead Dan Adams. Sponsons are the projections extending from both sides of the watercraft to provide protection, stability, mounting locations, etc. “During the time, we observed the process and wanted to learn what we could from our sister shipyard team.” The team from PSNS&IMF returned to NNSY to give guidance on the process, with Code 290 representative Dan Hager, and Shop 11 Mold Loft representatives Jason Anderson and Jeremiah Swain taking charge in sharing what they knew to Ewick and Hoellerich. “The team from Puget was absolutely amazing and shared the ins and outs of the 3-D scanning technology with us,” said Ewick. “I had done laser scanning work in the private industry but it was my first time tackling something like this. Hager, Anderson, and Swain guided us through each step, sharing as much knowledge as they could with us about two different processes we could use to get the results we needed.” The first process is photogrammetry, where you place targets an inch apart on a desired object or space for scanning. Once complete, you take multiple photographs which are then compiled into a software to build the 3-D model. The second process is the 3-D laser scanning, which requires more space for a larger read. The targets would be placed and then someone would operate the laser tracker and scanner from the pier to get the scan needed. Once completed, the 3-D model would be compiled in the software for use. With the knowledge provided by PSNS&IMF and USS George H.W. Bush (CVN 77) in drydock, Ewick and Hoellerich were ready to tackle the process for NNSY. “We began at Colonna's Shipyard in Norfolk where the sponsons are being produced,” said Ewick. “We use the scanning technology to analyze where the sponson would meet the shell of the ship. It helps provide an accurate measurement for our workers when it comes to installation and repair.” Next up was scanning after the pieces were installed. At this time three of the four sponsons have been installed onboard the Bush. “The two forward sponsons were scanned using photogrammetry,” said Ewick. “It was a first for us and required coordination across various shops and codes throughout the shipyard.” The Pipefitter Shop (Shop 56), The Optical Diesel Mechanics (Shop 38), the Shipfitter Shop (Shop 11), the Shipyard Operations Department (Code 300), and partners at Puget all played a part in this evolution. “It was a collaborative effort and we were able to be successful thanks to our shipyard family coming together to make it happen.” This process was a first for NNSY and a first for using the software directly in the drydock instead from piers and barges. “It's amazing to see something come together like this, especially when you think that we were two blank slates coming into the project,” said Hoellerich who had no prior experience working with 3-D scanning and metrology before joining the lab. “We were able to partner with our sister shipyard and work with shops and codes that I never thought I'd be able to do when I first joined the ranks of NNSY. Being able to gain that knowledge from our shipyard family and utilize what we've learned in the field is something those of us working in innovation live for.” The team will be completing the rear scans for the Bush in the future and hope to continue to perfect the process. In addition, they hope to continue to work with other shipyard entities to further expand on the technologies of the future. “This partnership has been a major success for us and we hope to continue to build those relationships with the other shipyards and beyond,” said Hoellerich. “We can all learn from each other and build from each other's experiences. We all share a mission and together we can succeed.” Ewick added, “we've also begun expanding more ways we can use the scanning technology at our shipyard. For example, we are looking into a future project where we scan inside the ship and build a path for extracting heavy equipment from within as to avoid interferences. We've seen more interest from others within the shipyard since we began to do work with this technology, seeing what ways it could help improve what we do here. That's what innovation is all about, taking those first steps in seeing what works. Even if what you try doesn't pan out, at least you gave it a shot. But you'll never know if it works or not unless you take that step. Don't be scared to try out something new.” For more information regarding innovation, contact the NNSY T&I Lab at 757-396-7180 or email the REAL Ideas program at NNSY_REALIdeas@navy.mil. https://www.navy.mil/submit/display.asp?story_id=110422

  • La Corée du Sud présente au monde son avion de combat de 5ème génération - Aerobuzz

    April 13, 2021 | International, Aerospace

    La Corée du Sud présente au monde son avion de combat de 5ème génération - Aerobuzz

    Actualité et information aéronautique

  • Focus sur le système « Vision », développé par Safran Electronics & Defense et Sodern

    January 28, 2021 | International, Aerospace, C4ISR

    Focus sur le système « Vision », développé par Safran Electronics & Defense et Sodern

    DEFENSE Focus sur le système « Vision », développé par Safran Electronics & Defense et Sodern La Tribune consacre un article au système de visée stellaire diurne et nocturne pour avions militaires, baptisé « Vision », développé par Safran Electronics & Defense et Sodern (filiale d'ArianeGroup). Ce système vise à être « permanent et totalement discret, sans émission de signaux radio électriques, et permettra une navigation précise et sûre, non tributaire de signaux de radionavigation (donc ni brouillable ni leurrable) et totalement souveraine », selon l'Agence de l'innovation de défense. « Ces viseurs d'étoiles diurnes permettront à nos aéronefs d'effectuer leur mission même lorsque les solutions de positionnement par satellites ne sont plus disponibles, comme cela peut malheureusement arriver sur nos thé'tres d'opérations », avait expliqué en juillet dernier la ministre des Armées, Florence Parly, dans un discours prononcé à Limeil-Brévannes au sein de Sodern. Lancé en 2016 par la DGA (Direction générale de l'armement), le projet vient de franchir une étape importante, avec la réalisation « d'essais au sol et en vol couronnés de succès », a récemment fait savoir l'Agence de l'Innovation de défense. Au terme de son développement, cet équipement permettra aux forces armées françaises de s'affranchir de toute dépendance aux systèmes de positionnement par satellites GNSS, notamment au GPS et à Galileo. La Tribune du 28 janvier

All news