Back to news

May 19, 2020 | International, Aerospace, Land, C4ISR, Security

Project Convergence: Linking Army Missile Defense, Offense, & Space

The Army wants to do a tech demonstration in the southwestern desert – COVID permitting – of how the new weapons systems it's developing can share data.
By SYDNEY J. FREEDBERG JR.

WASHINGTON: As the Army urgently develops its 31 top-priority technologies for future war, service leaders are studying a proposal to field-test some of them together later this year, Army officials told me.

The technology demonstration, known as Project Convergence, is still tentative, a spokesperson for the Army's Pentagon headquarters cautioned me. There's no guarantee it will even happen this year, in no small part because the COVID-19 pandemic has disrupted field testing, wargames, and training exercises across the Army. If it does happen, it's far from settled which systems will be involved.

Nevertheless, from what I've gleaned, Project Convergence will probably try to form a “sensor-to-shooter” network that shares data between systems being developed in at least three of the Army's Big Six modernization portfolios:

I've not heard specifically about systems from the Army's other three major modernization portfolios: armored vehicles (priority No. 2), high-speed aircraft (No. 3), and soldier gear (No. 6). But the Army envisions all of them as sharing intelligence over the network.

“The Next Generation Ground Vehicle is an important sensor and observer for Long-Range Precision Fires,” said Brig. Gen. John Rafferty, the LRPF director at Army Futures Command. “Same with Future Vertical Lift, same with the Army's space strategy led by APNT, and the network enables all of this.”

In fact, the Army ultimately wants to connect its units to the Air Force, Marines, Navy, and Space Force through a future network-of-networks called JADC2. That's short for Joint All-Domain Command & Control, a vision of seamlessly coordinating operations across the five official “domains”: land, sea, air, space, and cyberspace.

“We have to make sure that what we technically demonstrate later this year fits into a larger JADC2 architecture,” Rafferty told me in a recent interview. “I view this as kind of the ground portion of JADC2. How do we meet JADC2 in the middle? We're going to start from the ground up, they're going from space down.”

“We have to have a capability to converge these different systems at the decisive place and time,” he said. “We have to have a network.”

Many of the necessary network technologies are ones under consideration for what's called Capability Set 23, a package of network upgrades set to enter service in three years. The first round of upgrades, CS 21, goes to infantry units next year. But CS 23, focused on far-ranging armored formations, aims to add extensive new long-range communication capabilities using Low-Earth Orbit (LEO) and Mid-Earth Orbit (MEO) satellites.

“Every two years we're developing a new set of kit that we deliver as part of those capability sets,” Col. Shane Taylor told last week's C4ISRnet online conference. “We've got Project Convergence that we're working with the Network CFT this fall out in the desert, and you're gonna see a lot of MEO work out there.”

Taylor works for Program Executive Office (PEO) Command, Control, & Communications – Tactical (C3T), which is independent, by law, of Army Futures Command but works closely with it to develop and build the network. Satellites are essential to connect units that can't form direct radio links because of intervening mountains, buildings, or the horizon itself. But LEO and MEO are particularly valuable for communications, because they can relay signals with less lag and greater bandwidth than high-altitude satellites in Geosynchronous (GEO) orbits.

“In some cases, it's almost having fiber optic cable through a space-based satellite link,” Army Futures Command's network director, Maj. Gen. Peter Gallagher, told me in a recent interview.

That kind of network capacity is particularly crucial for connecting “sensors to shooters.” Sure, old-fashioned radio or more modern chat-style systems work okay for reporting where a unit is moving or what supplies are running low. But targeting data, especially for moving targets, requires much more precision and becomes out of date much more quickly.

“It's the second oldest challenge for artillery,” Rafferty told me, ever since 19th century cannon began to shoot over the horizon at targets their gunners couldn't see. “The oldest challenge is shooting farther, the second challenge is the sensor to shooter part: How do you minimize the time between the observation of the target and the delivery of the effects?”

For the longest-range new weapons the Army is developing, like ground-based hypersonic missiles and thousand-mile superguns, the sensor-to-shooter problem is even harder, because the Army doesn't have any sensors that can see that far. Nor does it intend to build them: The service's deputy chief of staff for intelligence, Lt. Gen. Scott Berrier, has said publicly the Army doesn't need its own reconnaissance satellites. So while the Army is buying new Grey Eagle -Extended Range scout drones with an estimated range of 200 miles, longer-range shots will rely on Space Force satellites and Air Force and Navy reconnaissance planes to spot targets.

Another potential source of information for long-range offensive fires, Rafferty said, is the Army's air and missile defense force. While air and missile defense radars are designed to track flying targets, they can also often calculate where missiles and artillery shells are being fired from, and those enemy batteries are prime targets for the Army's own long-range weapons. It's also much easier to blow up an enemy launcher on the ground – ideally before it fires – rather than try to shoot down projectiles in flight, so, where possible, the best missile defense is a good offense.

“I started to really think about this a few years ago when I did an exercise in Europe, called the Austere Challenge, when I was still a brigade commander,” Rafferty told me. “It was an eye-opening exercise for me because I'd never really operated at the theater level.... I started to see the importance of that teamwork between the theater-level [offensive] fires and the theater-level air defense systems.”

Training and modernization for both offensive and defense fires are based out of Fort Sill, Okla. “We're lucky because the Air and Missile Defense Cross Functional Team is right downstairs,” Rafferty said.

Rafferty's counterpart for air and missile defense is Brig. Gen. Brian Gibson. “It's about connections and access to the data,” Gibson told me in a recent interview. “Sharing the right data with the right user at the right time, along latency timelines that are useful... is really where the trick to this puzzle lies.”

“The most important part,” Gibson said, “where most of the work has gone on, is to understand where the linkages need to occur” between the Army's general-purpose Integrated Tactical Network (ITN) – that's what CS 21 and CS 23 are building — and the specialized, high-performance network for air and missile defense, IBCS.

As hard as it is to hit a moving target on the ground, it's exponentially more difficult to hit one in the air, especially a supersonic cruise missile or ballistic missile moving at many times the speed of sound. If your targeting data is a millisecond out of date, you may miss entirely. So, explained Gibson and his acquisition program partner, Maj. Gen. Robert Rasch (PEO Missiles & Space), you can't add anything to the IBCS network without making very sure it won't slow that data down.

But IBCS can certainly output the data it's already collecting for other systems to use, including long-range precision fires. “They can be a consumer of IBCS,” Rasch told me. And since ground targets don't move as fast as missiles, he said, IBCS wouldn't have to send updates to offensive artillery batteries at the same frenetic pace that air and missile defense units require. “It doesn't have to be in milliseconds,” he said. “It can be in seconds.”

Yes, seconds seem like a long time in missile defense, but to someone shooting at ground targets, that's lightning-quick.

“We've got great opportunities to leverage IBCS,” Rafferty said. “The way I view it, that's another sensor, with very capable radars, and that integrated air defense network is reliable and fast.”

https://breakingdefense.com/2020/05/project-convergence-linking-army-missile-defense-offense-space

On the same subject

  • Athletic trainers and greener kitchens on the way as Corps caters to ‘combat athletes’

    August 15, 2018 | International, Land

    Athletic trainers and greener kitchens on the way as Corps caters to ‘combat athletes’

    By: Shawn Snow The Corps plans to hire a slew of athletic trainers, and come October Marines will likely notice a new healthier food menu and layout at their respective chow halls. It's all part of an effort by the Corps to reduce injuries across the force and cater to combat athletes in similar fashion to division one collegiate players. The new chow facilities or “athletic kitchens” will boast healthier options with fresh fruit and vegetables up front. There will be a cold bar option with yogurt, granola and fresh fruit in the morning and a salad bar for lunch and dinner. “As you go through the line it's going to be the green stuff,” Col. Stephen Armes, the director of the Force Fitness Division told Marine Corps Times in an interview. “All the healthy stuff is going to be up front.” The new chow halls are going to resemble college athletic dining facilities with fresh greens and an assortment of healthy proteins, according to Armes. But unhealthy food is not disappearing, the Corps just plans to make it harder for you to choose that option. “Sometimes you just need a cheeseburger, there's nothing wrong with that,” Armes said. But, a Marine is “going to have to fight to get down to that cheeseburger.” The Corps is also on the verge of hiring new athletic trainers separate from the nearly 600 Force Fitness Instructors already fielded across the Marines. Full Article: https://www.marinecorpstimes.com/news/your-marine-corps/2018/08/14/athletic-trainers-and-greener-kitchens-on-the-way-as-corps-caters-to-combat-athletes/

  • Estonia’s new law opens door for weapons export, defense industry growth

    June 15, 2018 | International, Aerospace, Naval, Land, C4ISR

    Estonia’s new law opens door for weapons export, defense industry growth

    By: Jaroslaw Adamowski WARSAW, Poland — Estonia's Parliament has amended legislation to allow Estonian companies to make and handle military weapons and gear. The law paves the way for the development of the country's defense industry and the export of weapons and equipment by local players. Estonian Defence Minister Jüri Luik said in a statement that, to date, the Estonian military has acquired its gear almost exclusively abroad, but now the situation is expected to change, and export opportunities for the country's defense industry will also increase. “The absence of a right to handle weapons and ammunition has long been a serious concern for Estonia's defense industry, one that hinders the development of the defense sector,” Luik said. The legislation's summary states it “provides a legal framework for Estonian companies to begin to manufacture, maintain, import and export military weapons, ammunition, munitions and combat vehicles. The existing legislation does not allow this.” The ministry expects between five and six local companies to apply for the required licenses in the first year. The move comes as Estonia is planning a defense spending hike, with military expenditure to total €2.4 billion (U.S. $2.8 billion) in the next four years, according to Luik. Last April, the ministry unveiled the country's updated investment program for the years 2018-2022. Among others, Estonia aims to purchase munitions for about €100 million. Owing to the amended legislation, Estonian defense companies could also become suppliers to neighboring Lithuania and Latvia. Lithuania has allocated €873 million to its defense budget this year, up 20.6 percent compared with 2017. Latvia's military expenditure for 2018 is to reach €576.34 million, up €126.8 million compared with a year earlier. https://www.defensenews.com/industry/2018/06/14/estonias-new-law-opens-door-for-weapons-export-defense-industry-growth/

  • Next-generation simulation solution wins backing from European Commission

    October 19, 2023 | International, Land, C4ISR

    Next-generation simulation solution wins backing from European Commission

    The European Commission has picked the consortium to implement a prototype service-oriented innovative solution for distributed synthetic training and decision support.

All news