Back to news

February 16, 2022 | International, Naval

Poland shortlists Babcock, Thyssenkrupp for $2 billion frigate program

The latest announcement indicates that Warsaw has discarded the bid submitted by Spanish Navantia which offered its F-100 frigate.

https://www.defensenews.com/global/europe/2022/02/15/poland-shortlists-babcock-thyssenkrupp-for-2-billion-frigate-program

On the same subject

  • South Korea’s HHI inks deal to build four ships for Peru’s Navy

    April 18, 2024 | International, Naval

    South Korea’s HHI inks deal to build four ships for Peru’s Navy

    The vessels are part of Peru’s ambitious program to modernize its naval surface fleet, which may involve the construction of 23 ships of different types.

  • How the Army will plan cyber and electronic warfare operations

    June 21, 2018 | International, C4ISR

    How the Army will plan cyber and electronic warfare operations

    Mark Pomerleau   With cyber playing a critical role in conflict going forward, the Army has begun to recognize the need to have organic cyber planners within a brigade's staff to offer commanders options related to cyber as well as electronic warfare. Cyber and Electromagnetic Activities, or CEMA cells, have been stood up in each brigade acting as planners to provide targeting options and capabilities to get at commander objectives just as an artillery planner would offer the commander choices related to their field for a pending operation. At the tactical level, these two disciplines – cyber and electronic warfare – have become intertwined. “When I talk to Army commanders and staffs, I try to make the point that I want you to worry less about whether it's a cyber or EW effect,” Lt. Col. Christopher Walls, deputy director for strategy and policy, at the Army's Cyber Directorate within the G-3/5/7, said at the C4ISRNET Conference in May. For example, Walls said for a river crossing mission, a commander might say he needs to buy a few hours to get a battalion across. The CEMA cell, in turn, would look across the capability sets in its portfolio and come up with a course of action. These cells potentially have the ability to allow the commander to target local internet service providers or local routers and prevent opposing forces from using them. The teams may also have an electronic warfare capability that can jam local area network protocols. Finally, these teams might know where mobile switching centers are by digitally geolocating them allowing physical strikes to take them out, Walls said. “I don't want the commander to worry about which of those three things, I just want him to talk to me in terms of desired objective and effects and then us, along with the staff, will determine which capability makes sense,” Walls said. “That's kind of the way we're thinking about the tactical fight.” The best choice comes down to understanding the commander's objectives and intent in order to offer the best solution. “What I would do is understand his intent, what effect he wants and what I'll do is submit that in a formal request and I'll let the higher echelons determine if they can provide that effect,” Capt. Daniel Oconer, brigade CEMA officer, told C4ISRNET during a recent visit to the National Training Center. “In general, all I really need to know for my planning processes is understand what the maneuver force wants to do,” he added. “How do tanks and Bradleys [move], how are the troops on the ground moving. Then, what is their mission? What is their objective? What is the commander's intent? Once I understand that I throw some CEMA flavor, so to say, onto it and then enable them to accomplish their mission.” Oconer is currently billeted as a 29 series electronic warfare officer. The Army will begin to transition these individuals into the cyber branch, or 17 series, so they will all eventually be cyber planners in the CEMA cell. “The way that we're transforming our electronic warfare professionals is they will become cyber operators. They will be the face inside our brigade combat teams and our maneuver formations for cyber operational planning,” Maj. Gen. John Morrison, commander of the Cyber Center of Excellence, said during a May speech. “They're complimentary. You cannot look at electronic warfare professionals and cyber operators in isolation.” https://www.c4isrnet.com/electronic-warfare/2018/06/20/how-the-army-will-plan-cyber-and-electronic-warfare-operations/

  • DARPA: Five Teams of Researchers Will Help DARPA Detect Undersea Activity by Analyzing Behaviors of Marine Organisms

    February 18, 2019 | International, C4ISR

    DARPA: Five Teams of Researchers Will Help DARPA Detect Undersea Activity by Analyzing Behaviors of Marine Organisms

    Goliath grouper, black sea bass, and snapping shrimp, along with bioluminescent plankton and other microorganisms, are set to be the unlikely heroes of DARPA's Persistent Aquatic Living Sensors (PALS) program. Five teams of researchers are developing new types of sensor systems that detect and record the behaviors of these marine organisms and interpret them to identify, characterize, and report on the presence of manned and unmanned underwater vehicles operating in strategic waters. This new, bio-centric PALS technology will augment the Department of Defense's existing, hardware-based maritime monitoring systems and greatly extend the range, sensitivity, and lifetime of the military's undersea surveillance capabilities. DARPA first announced the PALS program in February 2018 with the goal of incorporating biology into new solutions for monitoring adversary movements across the seemingly endless spaces of the world's oceans and seas. Ubiquitous, self-replicating, self-sustaining sea life is adaptable and highly responsive to its environment, whereas maritime hardware is resource intensive, costly to deploy, and relatively limited in its sensing modalities. According to PALS program manager Lori Adornato, “Tapping into the exquisite sensing capabilities of marine organisms could yield a discreet, persistent, and highly scalable solution to maintaining awareness in the challenging underwater environment.” The DARPA-funded PALS teams must develop or apply technologies to record stimulus responses from observed organisms, and develop combined hardware and software systems that interpret those responses, screen out false positives, and transmit analyzed results to remote end users. The teams' solutions will incorporate technologies such as hydrophones, sonar, cameras, and magnetic, acoustic, and kinetic sensors. The team led by Northrop Grumman Corporation, under principal investigator Robert Siegel, will record and analyze acoustics from snapping shrimp and optical activity by bioluminescent organisms. The team led by the Naval Research Laboratory, under principal investigator Lenny Tender, will integrate microbial organisms into a sensing platform to detect and characterize biological signals from natural microorganisms that respond to the magnetic signatures of underwater vehicles. The team led by Florida Atlantic University, under principal investigator Laurent Cherubin, will record and analyze vocalization cues from goliath grouper in tropical and subtropical environments. The team led by Raytheon BBN Technologies, under principal investigator Alison Laferriere, will use snapping shrimp as sources of opportunity for long-range detection, classification, and tracking of underwater vehicles. The team led by the University of Maryland Center for Environmental Science, under principal investigator David Secor, will tag black sea bass with sensors to track the depth and acceleration behaviors of schools of fish that are perturbed by underwater vehicles. DARPA is also funding the Naval Undersea Warfare Center, Division Newport, under principal investigator Lauren Freeman, to develop a seafloor system that uses a hydrophone array and acoustic vector sensor to continuously monitor ambient biological sound in a reef environment for anomalies. The system will analyze changes in the acoustic signals radiated by the natural predator-avoidance response of coral reef ecosystem biota, which could offer an indirect mechanism to detect and classify underwater vehicles in near-real time. DARPA conceived of PALS as a four-year research program with the expectation that researchers will be able to publish results for review by the broader scientific community. However, if DARPA identifies any of the data, results, or technical specifications as controlled unclassified information, DARPA will require the PALS researchers to protect them to prevent proliferation outside of official channels. https://www.darpa.mil/news-events/2019-02-15

All news