Back to news

February 18, 2021 | International, Naval

PBO report on Canadian Surface Combatant to be released Feb. 24

PBO report on Canadian Surface Combatant to be released Feb. 24

The PBO study comes at the request of the Commons government operations committee, which wanted the latest cost figures on the CSC project.

On the same subject

  • BAE Systems to Deliver Autonomy Capabilities for Army’s Future Vertical Lift Initiative

    November 4, 2020 | International, Aerospace

    BAE Systems to Deliver Autonomy Capabilities for Army’s Future Vertical Lift Initiative

    BAE Systems announced today it has been awarded multiple contracts from the U.S. Army to develop key technologies for the Advanced Teaming Demonstration Program (A-Team). BAE Systems was the only company awarded contracts for three of the program’s four focus areas, designed to advance manned and unmanned teaming (MUM-T) capabilities that are expected to be critical components in the U.S. Army’s Future Vertical Lift (FVL) program. In order to combat the increasingly complex, contested, and communication-denied battlespace presented by near-peer adversaries, the U.S. Army developed the A-Team program to create an automated system to offload the cognitive burden of pilots while enabling them to command swarms of unmanned aircraft. BAE Systems was selected to deliver a highly automated system to provide situational awareness, information processing, resource management, and decision making that is beyond human capabilities. These advantages become exceedingly important as the Army moves toward mission teams of unmanned aircraft that will be controlled by pilots in real time. The contracts total $9 million and include awards for the Human Machine Interface, Platform Resource Capability Management, and Situational Awareness Management elements of the program. To deliver the critical autonomy technology, BAE Systems’ FAST Labs research and development team and Command, Control, Communications, Computers, Intelligence, Surveillance, and Reconnaissance (C4ISR) Systems business area will leverage their decades of work pioneering autonomy technologies. The program will leverage the Future Open Rotorcraft Cockpit Environment Lab to conduct simulation tests and demonstrations with products from different contractors in consideration of transition to the FVL program. Work for the program takes place at the company’s facilities in Burlington, Massachusetts and San Diego, California.

  • Gotta go fast: How America’s Space Development Agency is shaking up acquisitions

    November 11, 2020 | International, Aerospace

    Gotta go fast: How America’s Space Development Agency is shaking up acquisitions

    Nathan Strout WASHINGTON — In March 2019, the Pentagon established a new organization to buy space systems: The Space Development Agency. But this led to some confusion. After all, the U.S. Air Force’s Space and Missile Systems Center already bought the bulk of the military’s satellites and space systems, and the Space Rapid Capabilities Office acted as a supplement to drive faster programs. The imminent establishment of the U.S. Space Force brought further questions: Why set up a new space acquisitions organization when the military was on the verge of reorganizing its main space acquisitions service? Some suggested that the nascent agency wouldn’t survive the year. Over the intervening 18 months, the Space Development Agency, or SDA, has embarked on a whirlwind tour to not only explain what it’s building, but how it offers something different than legacy organizations. To the first point: SDA was set up to build the National Defense Space Architecture, a new proliferated constellation primarily in low Earth orbit that will be made up of hundreds of satellites. That’s a radical departure from traditional military space. To date, the biggest military constellation in operation is GPS, with about 30 satellites ― give or take a satellite or two ― on orbit at any one time. With the new architecture, SDA wants to put into orbit about 1,000 satellites by 2026. “It’s got this novel approach compared to, you know, kind of the legacy approach. They’ve got these very unique core values. So they do things quickly. They’re a very lean organization. They move out fast. They’re responsive to the needs of the war fighter,” said Mark Lewis, the Pentagon’s acting deputy undersecretary of defense for research and engineering. Over the last 18 months, the agency has designed the National Defense Space Architecture, or NDSA; issued its first request for proposals; and awarded its first contracts. Here’s what onlookers have seen in how the agency works differently: Gotta go fast The area where SDA has most distinguished itself is speed, according to some observers. “A lot of the reason the SDA was stood up is that there is a general recognition that the speed of the threat is increasing tremendously,” said Eric Brown, director of mission strategy for military space at Lockheed Martin, one of the companies providing satellites for the NDSA. “Everyone is acknowledging that in order to stay ahead and maintain our high ground from a space superiority standpoint, we’re going to have to operate at a different speed.” At an industry day in summer 2019, SDA Director Derek Tournear laid out the agency’s plan. In 2022, just three years after SDA was established, it would launch its first satellites ― a little more than 20. Most military constellations consist of less than a dozen satellites, and it can take five to 10 years from conception until the first satellite arrives at the launch pad. SDA’s plans didn’t stop there. The agency planned to launch increasingly large numbers of satellites into orbit in two-year tranches, culminating in a constellation of about 1,000 satellites in 2026. With this spiral development approach, the agency is looking to put mature technology on orbit now, and then provide upgraded capabilities as more tranches go online. In other words: In less time than it traditionally took the Air Force to design and launch one satellite, SDA wanted to launch 1,000. In the resulting 18 months, the agency has set a goal of launching its first satellites two years from now. “I certainly have to applaud SDA. In every case over the past year and a half, when they have set a date they have met that date,” Brown said. “They really kept to a very tight schedule, which is certainly impressive, especially for an agency that’s only just standing up.” SDA issued its first request for proposals on May 1, seeking 20 satellites for its transport layer. Later that month, it issued another solicitation for eight wide-field-of-view satellites for its missile-tracking layer. “They’ve done things that we’ve never seen before,” said Bill Gattle, the chief executive of L3Harris Technologies' space systems business. “They were able to release a request for proposal very quickly, and it was actually a pretty good request for proposal.” Gattle said SDA was unusually clear in laying out what it wanted and that the agency had one priority: speed. SDA wanted vendors who could stick to their aggressive schedule and deliver satellites in two years' time. “They only gave industry 30 days to respond (for each request for proposal),” Gattle said. “That is unprecedented speed ― we normally get 45, 60 days.” Moreover, while it typically takes months to get feedback from the customer, SDA responded within three weeks, offered the proposers notes, and required updated submissions back within two weeks, recalled Gattle. “And then they awarded about two to three weeks later. That compressed timeline was stunning.” In August, the agency awarded Lockheed Martin and York Space Systems $188 million and $94 million respectively to each build 10 of those satellites. In October, the agency announced two more contracts: SpaceX and L3Harris would receive $149 million and $193 million respectively to each build four wide-field-of-view satellites for the NDSA’s missile-tracking layer. Neither York Space Systems nor SpaceX responded to requests from C4ISRNET to discuss the contracts. “It demonstrates SDA [is] doing what it was created to do, which is to quickly obligate funds, move really quickly and execute toward the mission,” Lewis said, referring to the contracts. “It shows one of the values of SDA as kind of an independent organization in delivering this tranche 0,” he added. “It’s not clear that a larger, more bureaucratic organization culture could have moved as quickly as SDA did.” Bringing in the new kids Program officials sometimes talk a big game about bringing in nontraditional vendors, yet end up awarding to the same small group of contractor giants over and over again. But with its first batch of four contracts, the agency has already brought in some surprising names. York Space Systems, which will be building 10 transport layer satellites, has never built a major satellite for the Air Force or Space Force. The small satellite manufacturer has done some experimental work with the military, but this seems to be the company’s first major contract win with the Pentagon. SpaceX may be the most recognized company in the world when it comes to space, but to date the firm’s efforts have been limited to launch services and satellite-enabled commercial broadband. SpaceX has scrappily fought over the last decade to win more national security launches, and earlier this year it was named one of two companies providing heavy launches for the Space Force over a five-year period. Additionally, the company’s Starlink constellation has helped popularize the proliferated constellation concept on which SDA is built, and the services have begun experimenting with Starlink to enable beyond-line-of-sight communications. Still, this will be the first time SpaceX has built a satellite for the military. Neither York Space Systems nor SpaceX responded to requests for comment. L3Harris Technologies may not be a newcomer when it comes to supplying technology to the military, but many were likely surprised to see the company selected to build the missile-tracking satellites that will be key to the Pentagon’s efforts to defeat hypersonic weapons. L3Harris has not built a missile warning satellite for the U.S. military before; its forays into infrared sensors was limited to weather satellites until now. “We were known pretty much as a weather company in this area, infrared,” Gattle admitted. “This is the culmination for us of a pretty big pivot in our company.” A couple of years ago, L3Harris decided to apply its weather-sensing infrared technology to missile tracking, with a focus on the types of satellites the military was signaling it wanted: affordable and quick to produce. In October, that bet seems to have initially paid off with SDA. “The industry people, including us, are all repositioning our companies to address basically the message that space has to be a war-fighting domain, space has to be more affordable, space has to have easier access, where you can get there faster,” Gattle said. “I think for a lot of us in the industry, we view this as probably the biggest transformation we’ve seen since the Apollo days.” Of course, Lockheed Martin stands out in the group as a defense giant — one of the companies that’s always in the discussion when selecting a military satellite manufacturer — and naysayers may point to the firm’s inclusion as proof that SDA isn’t reinventing the wheel. The company itself is quick to acknowledge its role in the status quo, but Brown credited the contract win to Lockheed’s ability to be disruptive and quickly refocus its energy. “We’ve demonstrated — and have been told from SDA — we’ve demonstrated that we’ve built upon Lockheed Martin’s history of being disruptive,” Brown said. “We’ve had some success in the past and people have stopped associating us in some way with disruption, but this was a place where we really wanted to demonstrate something very differently from what you would see in some of our existing programs of record.” A key example of the company’s pivot from exquisite space systems to proliferated constellations is Pony Express, Lockheed’s experimental on-orbit mesh network. Developed in nine months, Pony Express was privately funded by the company to test new space-based computing capabilities that could enable on-orbit artificial intelligence, data analytics, cloud networking and advanced satellite communications. In other words, it was testing some of the very capabilities with which SDA wants to enable its own on-orbit mesh network. “We saw the requirements coming for transport layer — frankly, it’s the capability that the U.S. government has needed for some time,” Brown said. “Pony Express really marked a little bit of a graduation, being able to show the community and show the world the kind of capabilities that Lockheed Martin had been investing in and developing for some time.” Lockheed brought forward some of the technologies developed for Pony Express to the transport layer. In addition, Brown claimed, the company’s proposal included plans for a diversity of subcontracts in building its satellites, helping to expand the industrial base for SDA’s future tranches, which will include a massive increase in the sheer number of satellites purchased. “We made a conscious choice not to take a heavily vertical approach because we don’t think that that sort of vertical play that you might see from some other companies would have really benefited the SDA,” Brown said. Learning from industry Tournear has his own example of how his agency is unique, and it showcases how SDA wants to act like a commercial entity. Just as the agency awarded the two contracts for its first tracking layer satellites, it also canceled a contract for an experiment meant to reduce risk on those satellites. “We canceled that experiment because what we do at SDA is we continually look at measuring the return on investment to get the best capability for the taxpayer dollar, and we view that as the investment going forward,” Tournear said. “The tracking phenomenology experiment was started before tranche 0, with the idea that it would do two things. One, it would burn down risk for tranche 0 WFoV [wide field of view],” he added. “And number two, it would give us OPIR [overhead persistent infrared] bands that were multiple bands.” As the agency began receiving proposals, it became clear that some of the proposers were already including multiple bands on their OPIR solutions. In other words, SDA didn’t need to develop its own solution for that capability — instead, industry could provide it. Still, the experiment would offer valuable risk reduction, giving the tracking layer a greater chance of succeeding. SDA decided to calculate whether it was worth continuing the experiment. “We had to look at the cost going forward to carry the tracking phenomenology experiment, subtract from that the risk leans that it would burn down in the WFoV experiment, and calculate, in essence, our net present value going forward,” Tournear explained. “So in that respect, canceling that program saved us a total net present value of $20 million.” One contributing factor was the knowledge that the experiment was only going to deliver data nine months prior to the satellites being delivered. That was not a lot of time to factor lessons learned into the final product. Additionally, the agency didn’t have enough money allotted to buy all eight missile-tracking satellites. But by canceling the contract, SDA could apply the $20 million to buying more of them. “In order to ensure we get the best capability to the war fighter, the return is higher to invest that money toward getting more of the WFoV sensors up on tranche 0,” Tournear said. “That is a calculus that you don’t often hear being made by the government on these programs. But it does show that we are trying to respond in a rapid manner to get these capabilities fielded as quickly as possible, and we’re going to do trades to make sure that we push forward with getting those capabilities fielded." Tournear declined to say how many satellites the $20 million from the experiment bought, only noting that it enabled the agency to get the eight total satellites it wanted for tranche 0. “They’re making good decisions. The ability to stop things that aren’t working — I think that’s really important. The ability to start things quickly — that’s also really important,” said Lewis.

  • The carrier Ford is trying to shake years of controversy and find its groove

    February 3, 2020 | International, Naval

    The carrier Ford is trying to shake years of controversy and find its groove

    By: David B. Larter ABOARD THE CARRIER GERALD R. FORD IN THE VIRGINIA CAPES — Capt. J.J. Cummings is literally jumping up and down with excitement. “Ahhhhhh I love that s---!” he shouts as the roar of an F/A-18 Super Hornet’s twin engines fades into the distance. The fighter jet’s low flyby a few hundred yards off the port side of the U.S. Navy’s most expensive-ever warship is a loud reminder that the aircraft carrier Gerald R. Ford isn’t a construction project anymore. For Cummings, the ship’s Massachusetts-born commanding officer, and for the ship’s crew, Ford is now a living, breathing warship with jets operating from its $13 billion flight deck. “I could watch flybys all day,” the career fighter pilot said Jan. 27 during a visit by Defense News aboard the vessel. Standing on the deck of the first-in-class Ford, Cummings is showing off the major redesign of the flight deck, which expanded the available space to maneuver and refit fighters to get back in the air. “This spot right here is what defines the Ford class,” he said, stopping in front of the in-deck refueling stations. “On the Nimitz class, if you want to refuel an aircraft you have to pull a hose across the flight deck and you can’t drive over it so you can’t maneuver aircraft the way you might like. “Now you just open this hatch, pull the aircraft up and hook up right here.” The redesigned flight deck, which was developed in consultation with NASCAR pit engineers, gives the Ford an extra half acre of real estate over its predecessors. The extra space is key to the Navy’s newest platform, built from the keel up to maximize how efficiently the ship can generate sorties, as well as be adaptable to new aircraft and weapons systems over time. But the 23 new technologies incorporated into the Ford, while making the ship a technological marvel, have also been the cause of ongoing controversy as delays and cost overruns marred the program. Over the coming year, Ford will be underway 11 times over 220 days, working out the kinks, training sailors and writing the book on how the new class of carriers will operate. In the mind of the Cummings, that puts his crew in the history books. “What the American people should know is that this ship is absolutely amazing, and our crew is even more amazing than that,” Cummings said. “What people should know is that we are, no kidding, pioneers in naval aviation. Every [major] system on this ship is different from Nimitz class, so these people are pioneers. We're writing the book for the Ford class for the rest of history.” One of the enabling technologies to help them increase sortie generation is the advanced weapons elevators. The system is designed to cut the time it takes to move bombs from lower decks — where they are assembled and tested — to the flight deck for arming the Super Hornets. Delays with that technology contributed to the downfall of former Secretary of the Navy Richard Spencer and have been the latest in a long line of headaches caused by new technologies the Navy packed into the Ford. To date, four of the planned 11 advanced weapons elevators work as advertised. As secretary, Spencer made a public pledge to have the weapons elevators ready by last summer, but now they may not all work until 2021, delays he blamed on shipbuilder Huntington Ingalls Industries. Ensuring the Ford’s readiness has been a major focus of the acting Navy secretary, Thomas Modly. For Modly, the continued troubles with the Ford are hurting the organization. "There is nothing worse than having a ship like that, our most expensive asset, being out there as a metaphor for why the Navy can’t do anything right,” Modly said at a December U.S. Naval Institute forum. 'Managing the complexity’ The high-level attention on Ford, which has become a favorite topic of President Donald Trump when he talks about major defense programs, has made the Navy eager to highlight efforts dedicated to preparing the ship for theater operations. For the crew and officers, many of the headaches come from managing the sheer number of new technologies on the ship, said Cmdr. Mehdi Akacem, the air boss on Ford. “The biggest challenge is managing the complexity,” Akacem said. “I think there is more technical complexity packed into this ship than the Apollo program. I learn so much every day, I have to constantly refocus on what’s in my lane. “There are so many new systems. … The challenge is sustaining that focus on one new thing after another. I don’t think there are any five people who understand all the complexity on this ship, all these technical challenges happening in parallel.” That has made it difficult to develop maintenance and qualification procedures for the crew. However, slowly but surely the crew is figuring it out, Akacem said. “One of the parts of the overall system that’s still maturing is the maintenance documentation, the technical manuals, parts lists, periodicity of preventive maintenance,” Akacem said. “One of the neat modifications on the Advanced Arresting Gear, very simple to look at but a huge time saver: We used to have to take the system offline, climb into the Advanced Arresting Gear, climb all around it with a grease gun to go grease the bearings," he added. “Now there is a manifold so the sailor can just walk up with a gun — pump, pump, pump and done. And it saves about 45 minutes out of the grease process. Those are the kinds of things we’ve learned through the post-shakedown availability.” That’s what the officers and crew of Ford hope to figure out this year: How does this ship work, and what is the best way to man and maintain it? And for sailors, the only way to figure that out is to get the ship underway. “All good things come from ships at sea,” Akacem said. “We’ve sat around and philosophized about, ‘Well, can we get by with less?’ or ‘Do we need more here?’ Now we’re proving that out." “With the Advanced Arresting Gear — that’s probably where the steepest learning curve exists for our sailors — we were feeling overwhelmed the first couple days with preventative maintenance, corrective maintenance and a bunch of the technical preparations. But our level of uncertainty has gone down so much in just a couple of weeks,” he added. “Just the confidence growth has been tremendous.” The learning process has even led to some firsts for the Navy, said Cummings. “We have aviation boatswains mates — typically some our roughest, toughest people up here — and we’re making them be electricians and fiber-optics experts, which is a different theme," the ship’s commanding officer explained. “So now we’re putting [interior communications specialists] into the air department, which is a first. So now you have your ICs, who are your techie fiber-optics people, with your hardcore, hydraulic fluid-drinking, grease-wearing hard-chargers. It’s a very interesting mix in the air department," he added. “So is the manning right? Absolutely not. We’re still figuring it out. Some of these systems are a little immature, and we’re figuring it out, but it’s going to take time.” A training challenge A major hurdles for the crew has been getting sailors trained and qualified to operate, maintain and fix their own gear, Cummings said. “Self-repair: That’s a challenge” he said. “The ability to get underway, operate and fix our gear ourselves without having to pull in and bring in tech reps out from all over.” In the absence of new schoolhouses, which are on the way, sailors have relied on shore-based testing sites and simulators from vendors for training, Cummings said. “It’s a challenge. The infrastructure to train up our sailors — well, it’s coming and we’re working toward that end,” he said. “[There’s] a lot of on-the-job training." As far as schools, General Atomics will host sailors at Rancho Bernardo, a neighborhood in San Diego, California. From there, the sailors will have access to a simulator to practice catapult launches. The Navy will also send sailors to the test site for Electromagnetic Aircraft Launch System and Advanced Arresting Gear in Lakehurst, New Jersey. “The schoolhouses are coming, but it’s a challenge. We’re a first-in-class, we get a lot of Nimitz-class stock projected on to our ship, but it doesn’t work for our ship,” Cummings explained. Another challenge has been rack space. According to a recent Congressional Research Service report, the Navy is 100 racks short of what it would need to house a full crew and air wing. And while that isn’t an immediate issue for this event, it could prove a problem closer to its first deployment. But Naval Sea Systems Command said in a statement that the ship has what it needs for its first deployment already. “The ship’s bunks will be sufficient to meet ship’s crew, air wing, and embarked staff requirements for first deployment, based on overall berthing numbers identified in the manpower estimates for the Gerald R. Ford class,” NAVSEA said in a statement. “For ship’s crew, specifically, USS Gerald R. Ford (CVN 78) is designed to operate with hundreds fewer Sailors than required on the Nimitz class.” ‘Off and running’ But for all the myriad issues that come from fielding a radically different first-in-class ship, Cummings and his crew are jazzed about how it’s performing. Many of the key technologies, such as the Electromagnetic Aircraft Launch System and the Advanced Arresting Gear have performed remarkably well — a significant improvement over some of the bugs the ship faced when aircraft started landing on and launching from the carrier in 2017. “I just spoke to some of the first ones to use the flight deck back in 2017 and 2018: exponential improvement in performance,” Cummings said. “For the catapult, we smoothed out many of the software issues and tolerances. We reduced those tolerances to a right number and we’ve had very few issues with the catapults. “Our Advanced Arresting Gear is performing spectacularly. A couple hiccups here and there, a quick reset: off and running.” Ford has been using its time at sea to develop wind envelopes for all the aircraft currently flying in the fleet. The process included generating a series of wind conditions, launching and landing an aircraft, and downloading the technical data; then rinse and repeat. “By the time we pull in at the end of January, every fleet aircraft — C-2, E-2D, F/A-18 Super Hornet, Growler and T-45 (our jet trainer) — will be validated to be given their full envelopes for these aircraft to go on deployment or to train our young aviators,” Cummings said. The F-35 Joint Strike Fighter will ultimately be integrated into the ship, which is a matter of reconfiguring some spaces to handle classified materials and storing parts, among other things, but the ship will not deploy with the jet at first. As the ship keeps to a breakneck schedule over the next year, Cummings hopes to rack up a significant number of “cats and traps” (meaning individual catapult launches and recoveries) to get a stronger idea of how the ship will stand up to the crushing operations tempo of a carrier on deployment. “Our goal is to get about 7,000-8,000 cats and traps to figure out: ‘Hey, what’s going to break?' ” he said. “What parts do we need on order?’ Let’s refine our procedures. So through post-delivery test and trial period, that’s our goal. And with an embarked air wing in the April time frame, we’re going to be able to start getting after that. We’ve got a big year ahead of us." The Ford is doing about 10-15 traps per day as it works through the data set, and ultimately it should have about 1,000 by the time it pulls back in at the end of January, Cummings said. To get to that 7,000-8,000 goal, the Navy must get its student pilots lots of traps on Ford. “For the Next year, the only carrier on the East Coast able to provide carrier qualification capability is the Gerald R. Ford,” Cummings said. “When we get our flight deck certified in March, after that we’re going straight into carrier qualifications. So all year, any chance we can: ‘Hey, bring ’em out because we need some time in the batting cage. Hit off the tee and see where we have holes in our swing.’ ” The post-delivery test and trial period is supposed to last 18 months. After PDT&T, the ship is headed to full-ship shock trials, where live explosives are set off next to the ship to see how the class stands up to shock damage. Navy officials previously testified the entire process could delay the Ford’s deployment by up to a year. So taking a year to conduct the trials, then fix all the broken crockery: That would allow Ford to enter the 7.5-month carrier predeployment workup cycle in the second half of 2022, and then it would likely be able to deploy by mid-2023. So, after years of delays, cost overruns and controversy, the ship is finally getting into its groove. And that’s the message Cummings wants to send over the next year of operations. “This ship is kick-ass,” Cummings said. “I came here a year and a half ago, I heard all the stories, heard from the critics, came here, and they were all wrong in their assumption about our ship. What people should know is that this ship is amazing.”

All news