Back to news

October 11, 2019 | International, Aerospace

NFAC Tests Next-Generation Military Helicopter

Wind Tunnel Test Designed To Validate The Aerodynamic Performance And Flight Mechanics Of Sikorsky's X2 Technology Aircraft

The U.S. Army is looking to improve its aviation technology and recently called upon the AEDC National Full-Scale Aerodynamics Complex at Moffett Field in Mountain View, CA, to advance this effort.

Engineers from Sikorsky Aircraft Corporation and The Boeing Company, in partnership with the U.S. Army Combat Capabilities Development Command Aviation & Missile Center Army Aviation Development Directorate, recently conducted a series of tests at NFAC to support the development of the SB>1 DEFIANT, a military helicopter being developed for the Army's Joint Multi-Role Technology Demonstrator (JMR TD) program.

The goal of this wind tunnel test was to validate the aerodynamic performance and flight mechanics of Sikorsky's X2 Technology aircraft. These configurations, which are being utilized on the SB>1 DEFIANT, include a lift-offset coaxial rotor system, composite fuselage and rear-mounted pusher propulsor that provides increased speed.

The SB>1 DEFIANT, which made its first flight in March, is a technology demonstrator for a medium-lift utility helicopter. Future uses of this type of air vehicle could include attack and assault, troop transport or MEDEVAC.

The testing was conducted throughout the first half of 2019 and concluded in mid-June. To accomplish the tests, a 1/5 scale model of the SB>1 DEFIANT airframe with powered coaxial main rotors was placed in the NFAC 40- by 80-foot wind tunnel. Measurements included forces and moments on the various components, as well as fuselage, empennage and blade surface pressures.

David Wang, NFAC test engineer, said the recent tests expanded on data collected from a JMR wind tunnel entry conducted at NFAC in 2016 by gathering data at faster speed ranges. “From the NFAC perspective, the wind tunnel test was successful,” Wang said. “The test customer was able to collect performance and handling qualities data for their subscale model up to their maximum design flight speed.”

Data collected during the recent tests is undergoing review and analysis. It is unknown at this time if there will be future testing of the SB>1 DEFIANT model at NFAC.

The full-scale SB>1 DEFIANT flight demonstrator is currently undergoing ground and flight tests at Sikorsky's flight test facility. According to the Sikorsky-Boeing JMR Team, data from SB>1 DEFIANT will help the Army develop requirements for new utility helicopters expected to enter service in the early 2030s.

A previous DOD study concluded that upgrades to the aging DOD rotary wing aviation fleet would not provide the capabilities required for future operations. Significant improvement in several attributes of fleet aircraft, such as speed, payload, range, survivability and vertical lift are required to meet future needs. It was determined this improvement could be achieved through application of new technologies and designs.

To accomplish its goal, the Army has been executing a science & technology (S&T) effort to mitigate risk associated with maturity of critical technologies, feasibility of desired capabilities and cost of a technical solution. An aspect of this effort is the air vehicle development associated with the JMR TD program.

JMR TD is the alignment of Army Aviation's S&T with the Future Vertical Lift initiative, which seeks to develop a new family of system to modernize and replace the government's current fleet of rotorcraft. According to the Army, the intent of the JMR TD is to mitigate risk for the Future Vertical Lift program through means that include the testing of advanced technologies and efficient vehicle configurations.

NFAC, managed and operated by Arnold Engineering Development Complex (AEDC), is the largest wind tunnel complex in the world. It consists of both the 40- by 80-foot and 80- by 120- foot wind tunnels. These tunnels, which share a common drive system, are primarily used for aerodynamic and acoustic tests of rotorcraft and fixed wing, powered-lift V/STOL aircraft and developing advanced technologies for these vehicles.

Both subscale and full-scale models are tested at NFAC. The speed range of the 40- by 80-foot wind tunnel test section is continuously variable from 0 to 300 knots, while the speed range in the 80- by 120-foot wind tunnel section is continuously variable from 0 to 100 knots.

http://www.aero-news.net/index.cfm?do=main.textpost&id=021bcb83-4df9-4253-b7a3-ff3805b7b16a

On the same subject

  • Contracts for March 26, 2021

    March 30, 2021 | International, Aerospace, Naval, Land, C4ISR, Security

    Contracts for March 26, 2021

    Today

  • Czech defense minister pledges purchase of new jet trainers from local company

    October 21, 2018 | International, Aerospace

    Czech defense minister pledges purchase of new jet trainers from local company

    By: Jaroslaw Adamowski WARSAW, Poland — Czech Defence Minister Lubomir Metnar has announced the country's military could acquire up to six new L-39NG jet trainers from local manufacturer Aero Vodochody to replace its outdated L-39 Albatros aircraft. "The Ministry of Defence and the military are interested in these aircraft, negotiations are, of course, already taking place and we will acquire these aircraft," Metnar said, as reported by local broadcaster Ceska Televize. In addition to the Czech Air Force, Aero Vodochody hopes to supply its new jet trainer to a number of foreign markets. Earlier this year, Giuseppe Giordo, the company's president, said the firm estimates that in the next 10 to 15 years there will be a need to replace up to 3,000 training aircraft worldwide. The manufacturer aims to supply more than 100 L-39NGs in the next 10 years. Four jet trainers have already been ordered by Senegal, and deliveries are expected to begin in early 2020, according to Aero Vodochody. The L-39NG is fitted with the FJ44-4M turbofan engine made by Williams International. Aero Vodochody says it is the Czech Republic's largest aerospace company, with some 1,900 employees. https://www.defensenews.com/air/2018/10/18/czech-defense-minister-pledges-purchase-of-new-jet-trainers-from-local-company

  • With Squad X, Dismounted Units Partner with AI to Dominate Battlespace

    July 15, 2019 | International, Other Defence

    With Squad X, Dismounted Units Partner with AI to Dominate Battlespace

    DARPA's Squad X Experimentation program aims to demonstrate a warfighting force with artificial intelligence as a true partner. In a recent field test, the program worked with U.S. Marines at the Air Ground Combat Center in Twentynine Palms, California, to track progress on two complementary systems that allow infantry squads to collaborate with AI and autonomous systems to make better decisions in complex, time-critical combat situations. “We are in a race with potential adversaries to operationalize autonomy, and we have the opportunity to demonstrate autonomy in a way that we don't believe any nation in the world has demonstrated to date,” said Lt. Col. Phil Root (USA), the Squad X program manager in DARPA's Tactical Technology Office. “Developing hardware and tactics that allow us to operate seamlessly within a close combat ground environment is extremely challenging, but provides incredible value.” The exercises in early 2019 in Twentynine Palms followed experiments in 2018 with CACI's BITS Electronic Attack Module (BEAM) Squad System (BSS) and Lockheed Martin's Augmented Spectral Situational Awareness and Unaided Localization for Transformative Squads (ASSAULTS) system. The two systems, though discrete, focus on manned-unmanned teaming to enhance capabilities for ground units, giving small squads battalion-level insights and intelligence. In the most recent experiment, squads testing the Lockheed Martin system wore vests fitted with sensors and a distributed common world model moved through scenarios transiting between natural desert and mock city blocks. Autonomous ground and aerial systems equipped with combinations of live and simulated electronic surveillance tools, ground radar, and camera-based sensing provided reconnaissance of areas ahead of the unit as well as flank security, surveying the perimeter and reporting to squad members' handheld Android Tactical Assault Kits (ATAKs). Within a few screen taps, squad members accessed options to act on the systems' findings or adjust the search areas. Between Lockheed Martin's two experiments to date, Root says the program-performer team identified a “steady evolution of tactics” made possible with the addition of an autonomous squad member. They also are focused on ensuring the ground, air, and cyber assets are always exploring and making the most of the current situation, exhibiting the same bias toward action required of the people they are supporting in the field. CACI's BEAM-based BSS comprises a network of warfighter and unmanned nodes. In the team's third experiment, the Super Node, a sensor-laden optionally-manned, lightweight tactical all-terrain vehicle known as the powerhouse of the BEAM system, communicated with backpack nodes distributed around the experiment battlespace – mimicking the placement of dismounted squad members – along with an airborne BEAM on a Puma unmanned aerial system (UAS). The BSS provides situational awareness, detects of electronic emissions, and collaborates to geolocate signals of interest. AI synthesizes the information, eliminating the noise before providing the optimized information to the squad members via the handheld ATAK. “A human would be involved in any lethal action,” Root said. “But we're establishing superior situational awareness through sufficient input and AI, and then the ability to do something about it at fast time scales.” The Squad X program has moved quickly through development and is already well along the transition path, due in large part to the program's focus on partnering with the services to ensure real-world efficacy. For the CACI system, that included an opportunity to test the technology downrange to get real-world information, not simulation. At the most recent experiment with the BSS, service representatives used the system to locate and identify objectives in real time. For both systems, feedback has included a desire for a user interface so intuitive that training takes an hour or less and any available action is accessible in two screen taps. Staff Sergeant Andrew Hall with the Marine Corps Tactics and Operations Group (MCTOG), an advisory teammate to DARPA's Squad X Experimentation program, says the ability to provide early input will guard against developing a product that either isn't used or is used improperly. “The feedback process, in conjunction with the actual experimentation, gives the Marines the ability to use the technology and start seeing what it can do and, more specifically, what it can't do,” Hall said. With the conclusion of third experiment, the CACI system is moving into Phase 2, which includes an updated system that can remain continuously operational for five or more hours. Lockheed Martin will conduct its next experiment in the fall of 2019. CACI's BEAM system is already operational, and the Army has committed to continue its development at the completion of Squad X Phase 2. The Army is set to begin concurrent development of the Lockheed Martin ASSAULTS system in fiscal years 2019 and 2020, and then, independent of DARPA, in fiscal year 2021. https://www.darpa.mil/news-events/2019-07-12

All news