Back to news

November 12, 2018 | International, C4ISR

New DoD cyber strategies set clear priorities for the department

On the same subject

  • What the USAF’s ‘four-plus-one’ fighter fleet looks like - Skies Mag

    November 19, 2021 | International, Aerospace

    What the USAF’s ‘four-plus-one’ fighter fleet looks like - Skies Mag

    The Next-Generation Air Dominance fighter, F-15EX, F-35, and F-16 are where the U.S. Air Force sees its fighter future.

  • US Air Force delays timeline for testing a laser on a fighter jet

    July 6, 2020 | International, Aerospace

    US Air Force delays timeline for testing a laser on a fighter jet

    By: Valerie Insinna WASHINGTON — The U.S. Air Force's long-planned test of an airborne laser weapon aboard a fighter jet has been delayed until 2023 due to technical challenges and complications spurred by the ongoing coronavirus pandemic, its program head said. The Air Force's Self-Protect High Energy Laser Demonstrator program, or SHiELD, had originally planned to conduct its first flight demonstration in 2021, but the test has been pushed two years back, said Jeff Heggemeier, SHiELD program manager for the Air Force Research Laboratory. “This is a really complex technology to try to integrate into that flight environment, and that's ultimately what we're trying to do with this program, is demonstrate that laser technology is mature enough to be able to integrate onto that airborne platform,” he told Defense News in a June 10 interview. “But even things like COVID, and COVID shutting down the economy. That has impacts.” Beyond that, the future of using laser weapons aboard fighter aircraft is even more unclear. The goal of SHiELD was to give combat jets a way to counter missiles shot by an enemy aircraft or by air defense systems on the ground. But in May, Mike Griffin, the Pentagon's undersecretary of defense for research and engineering, noted that he was “extremely skeptical” that an airborne laser could be used for missile defense. Asked what that meant for SHiELD, Air Force acquisition czar Will Roper acknowledged that the service is rethinking how it could best use directed-energy technologies. Perhaps the most optimal use for SHiELD wasn't onboard a fighter, he said. “What I've told that team is, let's have a dialogue,” Roper said during a June 9 event hosted by the Mitchell Institute for Aerospace Studies. “Let's understand the different power levels and what they should correspond to, and let's not make the highest power level that we can dream up and the mission that's the sexiest be the thing that drives us.” “What I expect to get laser weapons to the goal line has been the humble, but important and very worrisome small drone threat. They continue to show up, they're difficult to attribute — we don't know who is sending them to our installations and tests and things of that nature, and we can't afford to shoot missiles at them,” he added. “So this is a perfect threat to make laser weapons real, and once they're real, we'll do what the military does. We'll look to scale the power.” Heggemeier said there are many ways the Air Force could spin off laser technologies developed by the SHiELD program, but it's critical the service continue with development so it can gauge the maturity and usefulness of the capabilities. “I think it's important for us to first remember what the whole point of SHiELD is. The whole point of SHiELD is not an acquisition program where we're turning out hundreds or tens of these laser systems for operational use. What we're trying to do with SHiELD is exactly answer those questions of: ‘Is laser technology mature enough to go on an airborne platform? Have we solved enough of those technical challenges that this is now a feasible thing?' Because there is that concern.” He also drew a distinction between the tactical, self-defense capability a SHiELD laser would give combat aircraft versus a more powerful laser capable of intercepting highly-advanced ballistic missiles, as the Missile Defense Agency has proposed. “You're not talking about these really, really long ranges. You're talking about a shorter range and different targets just to protect yourself or your wingman,” Heggemeier said. “Missile defense can mean a lot of things. Some of those missile defense missions are very, very hard, and some of them aren't quite so hard.” For now, at least, the Air Force's investment in directed energy remains stable. The service's budget lays out cash for high-energy lasers in multiple funding lines. For fiscal 2021, it requested $15.1 million for basic research and $45.1 million for applied research for high-energy laser technology, as well as another $13 million for high-power, solid-state laser technology. In FY20, the service received $14.8 million for basic research and $48.2 million for applied research for laser technologies. SHiELD is comprised of three elements: the laser itself, which is being developed by Lockheed Martin; the beam control system made by Northrop Grumman; and the pod that encases the weapons system, from Boeing. Heggemeier said the pod is under construction, with integration of the laser and beam control system planned to start next year. “A lot of the challenge is trying to get all of this stuff into this small pod. If you look at other lasers that are fairly mature, we have other laser systems that some other contractors have built that are ready to be deployed. But these are ground-based systems, and they are much, much more mature,” he said. In April 2019, the Air Force Research Lab conducted a ground test with a surrogate laser system — the Demonstrator Laser Weapon System, or DLWS, now in use by the Army. The demonstration involved the successful downing of several air-to-air missiles. “It turns out the DLWS system, when you take everything into account, is a really good surrogate for the laser power on SHiELD,” Heggemeier said. Because both SHiELD and DLWS generate similar amounts of energy on target — in SHiELD's case, Heggemeier would only say that it amounts to “tens of kilowatts” — the surrogate test gave the lab a good idea how the laser physically affects a target. In 2019, the team conducted a flight test of a pod with the same outer mold line as the one under development by Boeing. The pod was mounted to an aircraft — Heggemeier declined to specify the model — and flown around Eglin Air Force Base, Florida, to help measure how vibrations, the force of gravity and other environmental factors might influence the performance of the weapon. Air Force Magazine reported in 2019 that aerial demonstrations of SHiELD would occur onboard an F-15 fighter jet. https://www.defensenews.com/air/2020/06/30/us-air-force-delays-timeline-for-testing-a-laser-on-a-fighter-jet/

  • Thales et trois groupes comptent équiper le future drone MALE

    April 27, 2018 | International, Aerospace

    Thales et trois groupes comptent équiper le future drone MALE

    PARIS (Reuters) - Quatre groupes européens, dont le français Thales, ont annoncé mardi leur intention de coopérer pour doter le futur drone de surveillance européen de fonctions avancées de traitement de données et de communications. L'italien Elettronica, l'allemand Hensoldt, l'espagnol Indra et Thales précisent dans un communiqué commun avoir signé un protocole d'accord pour fournir des fonctions de renseignement, de surveillance, d'acquisitions de cibles et de reconnaissances (Istar) au futur drone en préparation par leurs quatre pays. "L'équipe est ouverte à la coopération avec d'autres entreprises", soulignent les quatre groupes. La phase de développement du drone MALE (haute altitude longue endurance) devrait démarrer en 2019. Airbus Defense and Space, Dassault Aviation (premier actionnaire industriel de Thales) et l'italien Leonardo avaient signé le contrat d'étude de définition en août 2016. Thales apportera son expertise dans les systèmes de missions de défense en se basant sur les technologies de connectivité, de big data (traitement massif de données), d'intelligence artificielle et de cybersécurité, fait valoir Patrice Caine, PDG du groupe français, cité dans le communiqué. (Cyril Altmeyer, édité par Matthieu Protard) https://www.capital.fr/entreprises-marches/thales-et-trois-groupes-comptent-equiper-le-futur-drone-male-1284701

All news