Back to news

August 29, 2018 | International, Naval

Navy’s Next Large Surface Combatant Will Draw From DDG-51, DDG-1000 — But Don’t Call it a Destroyer Yet

By:

THE PENTAGON – The Navy will buy the first of its Future Surface Combatants in 2023 – a large warship that will be built to support the Arleigh Burke Flight III combat system and will pull elements from the Arleigh Burke-class (DDG-51) and Zumwalt-class (DDG-1000) destroyer designs.

The combatant – not dubbed a cruiser, and potentially not dubbed a destroyer either – will be bigger and more expensive than the Arleigh Burke Flight III design and will have more room to grow into for decades to come, the director of surface warfare (OPNAV N96) told USNI News today.

Future Surface Combatant refers to a family of systems that includes a large combatant akin to a destroyer, a small combatant like the Littoral Combat Ship or the upcoming frigate program, a large unmanned surface vessel and a medium USV, along with an integrated combat system that will be the common thread linking all the platforms. Navy leadership just recently signed an initial capabilities document for the family of systems, after an effort that began in late 2017 to define what the surface force as a whole would be required to do in the future and therefore how each of the four future platforms could contribute to that overall mission requirement.

With the ICD now signed and providing the service with an idea of how many of each platform would be needed in a future fleet and how each would contribute as a sensor, a shooter or a command and control asset, Surface Warfare Director Adm. Ron Boxall and his staff are now able to begin diving into the finer details of what each platform would look like.

The first to be tackled is the large combatant, Boxall told USNI News today. He noted the effort would be more like the move from the Ticonderoga-class cruiser to the Arleigh Burke-class destroyer – where the same combat capability was kept, but housed in a more suitable hull – rather than the move from the Spruance-class destroyer to the cruiser, which maintained the same hull design but added in new combat capability.

After the addition of the AN/SPY-6(V) Air and Missile Defense Radar (AMDR) to the DDGs' Aegis Combat System to create the Flight III design, Boxall said the resulting warfighting capability is one the Navy can use for years to come.

“We have a new capability on that hull now, so everything's going good – except for, as we look towards going further, we know we've maxed out that hull footprint,” Boxall said of the Arleigh Burke-class hull design, power-generation capability and more.
“So the key elements that we're looking at in this work we're doing on the requirements side is, keep the requirements about the same as DDG Flight III, but now look at what do we need a new hull to do.”

USNI News first reported last month that the large combatant would pair a new hull with the Flight III combat system.

The Navy will spend about the next six months having that conversation about what the new hull will need, though he suggested to USNI News that it would need sufficient space to carry helicopters and unmanned systems; it would need to support long-range missiles and weapons; it would have to include command and control systems able to support a staff onboard for air defense or offensive surface capability, much like the cruiser does today with the air defense commander role for a carrier strike group; it may incorporate DDG-1000's signature controls and integrated power system; and it will certainly have to be flexible and modular enough to quickly undergo upgrades and modernizations in the future as new systems are developed that the Navy will want to incorporate into the next block buy of large combatants or back fit fielded ones.

Though there has been much speculation about whether the large combatant would use an existing design or a new design, Boxall said there really are no designs out there that meet the Navy's needs without significant modifications.

Whereas the ongoing frigate design effort was able to mandate that bidders use mature parent designs, Boxall said “a lot of people in the world make frigates. Not many people make large surface combatants of the size and capability that we need. So we've got to kind of look to our portfolio of blueprints that we have as a starting point, and we'll edit and modify the hull and design things as we go forward.”

“I think what you're going to see won't be a huge deviation from things we have already, but at the same point, we are going to be making changes to anything we have” already in the fleet, he added.

In a nod towards the idea the next large combatant will share the same combat system as DDG Flight III and will perform much the same role in the fleet, Boxall said the Navy is starting with the DDG-51 Flight III capability development document (CDD); will go through a Large Surface Combatant Requirements Evaluation Team effort with requirements, acquisition and engineering personnel from the Navy and industry; and after six months call the finished product a “modified Flight III CDD.” Once that modified CDD is complete, it will be clearer how much the future large surface combatant will resemble its predecessor and how much it will be a new class of ship – which will likely determine its name.

“It is the big question: what do you call the future large surface combatant? I don't know. I don't think you call it a cruiser. I don't think you call it a destroyer. Maybe – I don't know what it is,” Boxall said, noting that he has commanded both a cruiser and destroyer and that they get used in much the same fashion, save for the cruiser's role as the air defense commander ship, which the future large surface combatant will have the capability of doing with its command and control suite.

Once the first large combatant is designed and purchased in the 2023 “block” – following the current block-buy of Flight III DDGs from Ingalls Shipbuilding and General Dynamics Bath Iron Works, which spans from Fiscal Years 2018 to 2022 – new blocks will be planned for every five years. As USNI News has reported, this block structure, laid out in a Surface Combatant Capability Evolution Plan, would allow the insertion of new hardware and software in a predictable timeline. This would help researchers and developers in the government and in industry understand when a new capability would have to be matured by to be included in the next block design, and anything not quite ready yet could wait until the next block. This setup is much like the Virginia-class attack submarine's block upgrade approach to adding in new capabilities, and its Acoustic Rapid Commercial-off-the-shelf Insertion (ARCI) process of adding new capabilities in via new construction and back fitting existing subs. However, Boxall noted the surface community had the added challenge of managing this block buy and upgrade effort across four or more types of surface combatants, compared to just one class of attack submarines.

Unlike before, when the surface community would undergo a massive planning effort – like the CG(X) cruiser replacement design that ultimately was too expensive and not accepted by the Navy – and then cease planning for many years before undertaking another massive effort, Boxall said he hoped the block upgrades would create a “heartbeat type of effort, where you always have something going on.”

https://news.usni.org/2018/08/28/navys-next-large-surface-combatant-will-draw-ddg-51-ddg-1000-dont-call-destroyer

On the same subject

  • The Pilot Project Podcast: Featuring Paul Goddard - flying SAR missions in the CH-149 Cormorant - Skies Mag

    November 21, 2023 | International, Security

    The Pilot Project Podcast: Featuring Paul Goddard - flying SAR missions in the CH-149 Cormorant - Skies Mag

    In Episode 27 of The Pilot Project Podcast, Goddard shares his experiences as a CH-149 Cormorant pilot conducting SAR missions and rescues.

  • Navy, Marine Corps test new laser projection system to paint aircraft

    July 9, 2024 | International, Aerospace

    Navy, Marine Corps test new laser projection system to paint aircraft

    The services are experimenting with a better way to mark insignia on aircraft, one that doesn't require old-school stencils.

  • A Modern Solution To Improved Performance, Cost, Use For The Venerable Chinook

    July 29, 2020 | International, Aerospace

    A Modern Solution To Improved Performance, Cost, Use For The Venerable Chinook

    It's the dream of military acquisition in 2020: A new system that drops into place in a current piece of hardware, provides improved performance, easier maintenance, and builds on a legacy of more than 12 million battle-proven hours of operation. It's the T55 714C, Honeywell Aerospace's new variant of the venerable T55 turboshaft engine used on American helicopters and fixed wing aircraft since 1955. The engine's starring role, however, is aboard Boeing's CH-47A and MH-47 rotorcraft, known as the Chinook. The heavy-lift Chinook that has served the Army consistently, as well as international customers, for more than 60 years features two counter-rotating rotors that eliminate the need for an antitorque vertical rotor. The unique design requiring two T55 engines per aircraft allows all the T55's power to be used for lift and thrust and enable perhaps the toughest helicopter pilot maneuver known—the pinnacle landing. In the years since the T55 and Chinook entered service in 1962, Honeywell has delivered more than 6,000 engines, with 2,500 engines in service today supporting 950 aircraft operating in 20 countries. Dave Marinick, Honeywell's President of Engines and Power Systems, says throughout all these years the company has invested in the engine, from its original 1,600 shp capability to today as the T55 produces 4,800 shp to power the Chinook to a maximum speed 196 mph. But now, with Future Vertical Lift and its high-speed rotorcraft on the horizon, Honeywell looked again at what the Army needed to power the Chinook to fill the heavy lift role as the Future Armed Reconnaissance Aircraft and Future Long-Range Assault Aircraft go into service. "Looking back at the multi-decade history, characterized by a close relationship with the Army and an understanding of how the aircraft is used—how the army flies the Chinook, how they maintain the Chinook—we have been able to focus on what is important to our customer," Marinick adds. The Charlie variant of the T55 fits the bill, according to Marinick. It maintains the current engine architecture, while offering 20% more power, nearly 10% improved performance at high and hot altitudes and using 9% less fuel. It includes a modern full authority digital engine control with health monitoring. "We designed in a cost-effective way to increase power to 6,000 shp, and we have a roadmap to increase that up to 7,500 shp," Marinick says. "And while saving gas is one thing, we also are extending the range with the new engine, allowing the pilot to fly or loiter longer, an important option for the operators using this aircraft—whether for military missions, fire suppression or disaster relief." In addition to its performance improvements, the T55 714C features a new compressor and improved reliability and lifecycle. The accessory section has also been redesigned based on feedback from Army customers. In the past, maintainers had to pull the engine entirely to access the accessory section on the number 2 engine. The redesign shifts the accessory section to the top of the engine, providing easier and saving hundreds of man hours to make a switch. There are no changes to the engine mounts, making the T55 714C a drop-in replacement. It can be installed as a full-up new engine or as a kit that is introduced during overhaul. "In this concept, we are turning a maintenance event into much more—a Chinook leaving with new engines, without requiring a block upgrade. We're delivering major performance improvements, without tearing up the aircraft," Marinick says. The engine's tooling, logistics and training remain the same, further reducing the time required to introduce a much-improved engine. The new engine comes with another major change. The U.S. Army has completed a product verification audit to provide approval for Honeywell to open a state-of-the-art T55 Repair and Overhaul Center of Excellence near the company's Phoenix, Arizona headquarters. Marinick says the new facility will increase throughput by two to three times the previous capacity for CH-47 Chinook helicopter fleets. The move also establishes a larger pool of highly trained technicians who will work alongside the engineering team to streamline feedback and help to inform future upgrades. The company has also launched an initiative to ensure on-time delivery of materials from suppliers to support the expanded capacity. "Future Vertical Lift is upon us," Marinick says, "We think of the Charlie as an affordable, responsible upgrade and service designed to keep the Chinook at optimum performance and readiness in a realistic way, through 2060." Honeywell's upgraded T55 Charlie engine is expected to be ready for flight test at the end of 2022. For more Information about the T55, click here.

All news