Back to news

August 21, 2020 | International, C4ISR, Security

Here’s what US Cyber Command wants next for its training platform

WASHINGTON — As the U.S. Defense Department matures its cyber force and training, it wants greater visibility over the readiness of its teams and a more realistic training environment that replicates the entirety of the internet, including social media.

These two areas were the focus of the latest industry day for the Persistent Cyber Training Environment, or PCTE, which is U.S. Cyber Command's online client that allows worldwide cyber mission force teams to connect and conduct individual and team training as well as mission rehearsal.

The Army is running the program on behalf of Cyber Command and the joint cyber force.

The Aug. 19 industry day specifically focused on what the PCTE program office is calling Cyber Innovation Challenge 4. Officials have said that Cyber Innovation Challenge 4 differs from its predecessors, partly because how the program office has matured and better integrated with the operational force at Cyber Command and the service cyber components.

The challenges are ways to deliver incremental capability to the training platform. They also serve as competitions to award contracts and layer new technologies onto the platform, oftentimes involving smaller, nontraditional defense companies. There were 78 companies registered to the industry day — 25 percent of which were new to PCTE competitions and cyber innovation challenges.

“What do I need from you? The two major areas we're focused on today are cyber mission force assessment, which is improving our ability to assess our training of the force, and two, traffic generation. Increasing the realism of operating [in] the internet,” Lt. Gen. Stephen Fogarty, commander of Army Cyber Command, told the industry audience during the remote event.

These two focus areas emerged from multiple discussions with Cyber Command and the service cyber components, officials said. Part of what is driving the greater need to assess the force and understand its readiness is new reporting requirements from Congress.

“The assessment functionally must be able to incorporate defined training standards which will enable USCYBERCOM to accurately measure and maintain team and mission readiness, which has become even more critical with the 2020 National Defense Authorization Act directing quarterly reviews of the cyber mission force's readiness,” said Col. Tanya Trout, the outgoing director of the Joint Cyber Training Enterprise, which is the nonmaterial component to PCTE at Cyber Command. “Being able to demonstrate how we're impacting readiness is the gamechanger.”

A staffer for the House Armed Services Committee said the quarterly assessment is set to be delivered along with the quarterly briefing on cyber operations, as mandated in a previous NDAA. However, due to the ongoing pandemic, the committee has been unable to schedule the briefing. The staffer added that despite not having the report in hand, the committee is encouraged to see the Pentagon has made progress in creating metrics to evaluate the cyber mission force.

Commanders also want a better way to see how their forces perform during training so they can review scenarios and modify it as needed.

Specific requests to industry include planning tools, a scoring engine, an assessment repository and data collection, analytics dashboards and aggregation, and external reporting.

“These capabilities will give commanders better tools to assess their force. Commanders will be able to look at data and assess individual ... and unit readiness. These capabilities will also give training managers planning tools to meet commander's goals,” Fogarty said.

Regarding traffic generation, Fogarty said there's a need for forces to be able to operate across the continuum of the information environment, not just within a certain set of networks. These include friendly space, gray space — which refers to the neutral area of the broader internet — and adversarial networks (known as red space).

“The environment that PCTE replicates has to actually replicate the real-world environment,” he said. “We need a way to define, shape and record realistic traffic emulation capabilities that mirror real-world activities and terrain across the cyber domain. But also, very importantly, in the information environment, that includes social media because it would be very simple for us if all we had to do was worry about just the network. What we have to worry about is the entire information environment.”

The program office is now looking for host/user-based traffic activities, cyber traffic terrain, network traffic layers, information operations and social media layers, and traffic command-and-control dashboards.

https://www.c4isrnet.com/cyber/2020/08/20/heres-what-us-cyber-command-wants-next-for-its-training-platform/

On the same subject

  • Finland set to join NATO but Sweden's membership still up in the air | CBC News

    April 3, 2023 | International, Other Defence

    Finland set to join NATO but Sweden's membership still up in the air | CBC News

    The flag of Finland will be run up the flagpole at NATO headquarters on Tuesday, marking a history-making?but?bittersweet moment for the alliance ? which had hoped to be doing the same thing with Sweden.

  • Kratos Targets Ground System ‘Revolution’

    August 18, 2020 | International, Land, C4ISR

    Kratos Targets Ground System ‘Revolution’

    We think that p-LEO is a big deal. And there's got to be a revolution that has to hit the ground segment, says Phil Carrai, president of Kratos's space, training and cyber division. By THERESA HITCHENSon August 17, 2020 at 1:20 PM WASHINGTON: As DoD and commercial industry scramble to develop small satellite constellations in Low Earth Orbit for everything from high-speed communications to near-real time Earth observation, Kratos is quietly working to solidify a central role providing the new ground systems required to make them work. While there is enormous military and commercial interest in the proliferation of small LEO satellites, known as p-LEO, not nearly as much attention has been paid to the radically different ground-based infrastructure to support those constellations. But the necessary changes in ground architecture will be monumental, and extremely lucrative for those companies at the crest of that wave. “We think that p-LEO is a big deal. And there's got to be a revolution that has to hit the ground segment,” says Phil Carrai, president of Kratos' space, training and cyber division. “We think this is kind of our play for the next many years. ... We've been making some substantial investments in that, in the sense of taking what was analog and stovepiped and moving it into a digital, dynamic, cloud infrastructure.” Kratos, headquartered in San Diego, is a mid-tier company with $750- to $800 million in annual revenue, and is perhaps best known in the defense arena right now for its low-cost attritable drones. Its XQ-58A Valkyrie is one of the top contenders for the Air Force's high-profile Skyborg program to build autonomous drones that can mate with piloted aircraft for a variety of missions; it also is providing an airframe, based on its Mako UTAP-22, as a subcontractor to Dynetics in DARPA's Gremlins program to develop drone swarms. But space-related work is the firm's bread and butter. Kratos' space, training and cyber Division is the company's biggest, Carrai said, with a large, but often behind-the-scenes, footprint in both the military and commercial satellite communications markets. Indeed, while Valkyrie's role in the Air Force's Advanced Battle Management System (ABMS), which is developing new technologies to support command and control of future all-domain operations, has been well documented, Kratos space-related comms systems and ground equipment are actually playing a bigger part as subsystems within many other company's offerings, company officials explained in a teleconference with Breaking D. “Our space portfolio really is all about communications and the ground segment, if you will, so that's been our heritage,” Carrai said. “Probably 90 percent of US satellite missions use our technology in one form or fashion. So, we are rather unique in the sense that we can claim the US Air Force and SMC [Space and Missile Systems Center] as one of our largest customers, and, probably in our top 10 or top five, Intelsat and SES are also very large customers.” The advent of 5G mobile telecommunications networks, and its promise of hyper-connectivity through the Internet of Things including from space, has mesmerized DoD and the Intelligence Community, as well as industry. The chief benefit of tying together satcom and wireless and terrestrial networks, for both national security and commercial communications, is expanded reach to hard-to-access areas. For example, satellite signals have trouble penetrating areas like ‘urban canyons'; laying fiber and erecting cell-towers in rural and harsh terrain such as mountainous regions is very costly if not impossible, but satellite communications is relatively simple. The challenge is integrating currently incompatible (in more ways than one) and heavily stovepiped networks in a seamless fashion that allows near-instantaneous roaming among them. That is why the ground system issue is so important. “We think that there's a substantial change that needs to take place from the ground perspective,” Carrai said. Not only will there need to be “way more sites” to connect to fast-moving LEO satellites due to the simple laws of physics, but satellite ground stations will need to be configured more like terrestrial communications nodes with machine-to-machine operations ensuring the best link to any one satellite at a given place or time. Chris Badgett, Kratos VP for Technology, explained that this kind of “dynamic resource allocation or that dynamic situational awareness” is particularly important to military users in order to provide jam-proof communications. In essence, this would allow a military radio to ‘jump' from one frequency being jammed to another that is open. Today, if ‘changing the channel' is possible, it is up to a solider or sailor or Marine to figure that out and manually flip switches. The ultimate goal is to automate that frequency and network ‘hopping' capability so that users don't even notice that it's being done. The mess that is the world of DoD satcom terminals is a long-standing sore-thumb for operators, particularly in the Army. As Breaking D readers know, DoD currently maintains 17,000 terminals with “approximately 135 different designs,” as the Government Accountability office found. Those terminals operate across diverse platforms—such as ships, backpacks, vehicles and aircraft — all with differing system requirements, so that for the most part each terminal system (i.e. each type of radio) is tied to only one satellite network and one type of platform. And while fixing the current problem is already a Herculean task, it could be a show-stopper to Dod's vision of future all-domain operations, linking sensors and shooters provided by all the services together via a Joint All-Domain Command and Control (JADC2) network. “The major obstacle that we have from a ground system standpoint is the current ground architectures have all been designed and developed in a very stove-piped and mission-specific sense. And so each ground system was designed for the mission that it was supporting,” said Frank Backes, senior VP for Kratos Space Federal Solutions. “Where we're going now with a joint, or combined, capability is the integration of those ground systems. And therein lies the complexity. “How do you take a legacy-based architecture that was very stovepipe designed and integrate it together into a common system that gives you enterprise-wide control of the infrastructure, and also gives you the awareness of all the systems? It's very easy to become overwhelmed in the information that a combined system provides,” Backe added. As Breaking D readers know, sorting out those answers is what Gen. Jay Raymond, head of the Space Force, set out to do with his Vision for Enterprise Satellite Communications (SATCOM). That is aimed at creating a seamless network of military and commercial communications satellites in all orbits, accessible to troops, vehicles, ships and aircraft via ground terminals and mobile receivers that would automatically “hop” from one satellite network to another. Carrai said Kratos believes that ultimately the “current analog stovepipe infrastructure that exists today” must simply be replaced. What is needed for integrated satcom is “a roaming modem or a roaming terminal,” and the ability to integrate satellite-provided imagery into the network, a “kind of a virtual antenna.” “If you don't have that capability, you're not going to be resilient, it's going to cost a lot of money, and you're going to create a huge exposure because everybody's going to know what antennas are used for what purpose,” he added. All that said, Carrai opined that partly because of push from the Space Force, the stovepipe problem with milsatcom networks is beginning to change. “It's still a struggle,” he said, because “there's a lot of drive from the spacecraft manufacturers to link the ground system with it. You know, that's what makes it a multibillion dollar system.” In addition, he said, the scramble by commercial satcom operators to get on the 5G bandwagon is forcing them to figure out how to open up proprietary networks. “Commercial operators all see that 5G and data is their future, not broadcast, he said. “The commercial operators are going to lead if not the defense side because they have to interoperate with the telecom operators if they're going to survive.” https://breakingdefense.com/2020/08/kratos-targets-ground-system-revolution

  • Can the National Guard help solve states' cyber problems?

    January 23, 2019 | International, C4ISR

    Can the National Guard help solve states' cyber problems?

    By: Mark Pomerleau The Department of Defense, in conjunction with the National Guard, has drafted a plan to allow for better coordination and information sharing to states in the event of a cyber emergency. Aside from the typical assistance the National Guard offers states, such as natural disaster cleanup, the Guard also helps states respond to major cyber threats or incidents. This can include securing critical infrastructure such as power plants, water treatment plants or major ports. The new plan, known as a concept of operation, describes a framework for how information flows from the federal government — Department of Homeland Security and Cyber Command — to the states to help government officials improve their cybersecurity. The plan is still in draft form, Lt. Col. Jody Ogle, director of communications for cyber programs at the West Virginia National Guard, told reporters Jan. 17. “That concept of operation helps shape that framework for how that information can flow up and down” the government, Ogle said. For example, if an IT technician working for a secretary of state notices something out of the ordinary on the network, that can be passed up to higher levels of the government and included with other threat signals across sensors on the network making that initial small tidbit of information more actionable. Ogle said he helped write the concept during a recent stint at U.S. Cyber Command's Joint Force Headquarters-DoD Information Networks, which is tasked with defending DoD's network. Full article: https://www.fifthdomain.com/dod/2019/01/22/can-the-national-guard-help-solve-states-cyber-problems

All news