Back to news

September 24, 2018 | International, Aerospace, C4ISR

Here’s how Air Mobility Command will improve aircraft survivability

By:

In a great power conflict, mobility aircraft will be essential to deliver fuel and supplies to the warfighters. But increasing concern over anti-access/area denial threats from potential foes, and the fact that big bodied mobility aircraft present inviting, in fact, critical targets has the attention and concern of Air Force leadership.

The new head of Air Mobility Command is focusing on four key areas to improve the survivability of mobility aircraft and gain persistence over the battlefield.

Gen. Maryanne Miller, who took the controls Sept. 7 when Gen. Carlton Everhart retired, told reporters at the Air Force Association's annual Air, Space and Cyber Conference that the Illinois-based command is looking at four categories of survivability improvements:

  • Situational awareness of the battlefield
  • New countermeasures to operate in a combat environment
  • Self-defense systems
  • Disciplined signature management

“Looking at each one of these categories will help advance the survivability for our platforms in the threat environment,” Miller said Tuesday.

Miller is carrying forward work that was done under her predecessor. Early this year, AMC completed an assessment about how to improve the survivability of aircraft in contested environments. The “High Value Airborne Asset” study recommended improvements to communications, situational awareness and self-protection systems.

There are many different technologies to consider and develop for self-protection. including light armor, signature management tech and high-energy lasers. Former AMC commander Gen. Carlton Everhart often talked about his desire to put lasers on mobility aircraft, beginning with the KC-135, and the command has also been working to improve secure communications, notably on the C-17.

The service needs integrated situational awareness capabilities that provide all aspects of pertinent battlefield information.

New sensors will help the command better understand everything that's happening within the battlefield. As Air Mobility Command looks at how best to build that situational awareness, it could mean building sensors onto the aircraft or new air frames to meet those requirements.

“Given the threat environment, it's probably a little bit of both,” Miller said.

With signature management, or detection avoidance, Miller said AMC is looking at new air frames that will have common cockpits, advanced propulsion systems, payload, offload, range, speed and fuel efficiency.

Miller said the command is figuring out if modifications can be made on current air frames or if new ones need to be built.

“We're really trying to take advantage of signature management properties associated with each air frame itself,” she said.

Meanwhile, U.S. Transportation Command and the Cost Assessment and Program Evaluation organization within the Office of the Secretary of Defense have been assessing the number of tanker aircraft, airlift aircraft and sealift ships needed to meet future combatant commander requirements.

The study, known as the Mobility Capabilities and Requirements Study, is expected to be completed this fall.

“America's air refueling fleet is the most stressed of our air mobility forces," Gen. Darren McDew, commander of USTRANSCOM, told the House Armed Services Committee earlier this year. “The combination of an aging fleet, increasing demand, and global tanker distribution puts a significant strain on this scarce national resource.”

“Our ability to deploy decisive force is foundational to the National Defense Strategy. The size and lethality of the force is of little consequence if we can't get it where it needs to go when we want it there,” said McDew.

The rate of change in technology requires quick innovation to overcome threats, Miller said.

The force needs aircraft that are “able to survive, integrate and operate in DoD forces in current and future threat environments.”

Miller said the key is understanding the threats of the future and modifying or building a plane that allows the Air Force to operate through that threat environment.

https://www.airforcetimes.com/news/your-air-force/2018/09/22/heres-how-air-mobility-command-will-improve-aircraft-survivability

On the same subject

  • South Korea, US explore joint ship, weapons maintenance opportunities

    February 6, 2024 | International, Naval

    South Korea, US explore joint ship, weapons maintenance opportunities

    South Korean defense companies have also been expanding their presence in the United States.

  • NATO to buy 1,000 Patriot missiles to enhance Allies’ air defences

    January 3, 2024 | International, Land

    NATO to buy 1,000 Patriot missiles to enhance Allies’ air defences

    NATO’s Support and Procurement Agency will support a coalition of Allies, including Germany, the Netherlands, Romania and Spain to procure up to 1,000 Patriot missiles to strengthen their air defences amid Russia’s war against Ukraine. The contract will expand the European production of the missiles, enhancing supply and ensuring the replenishment of Allied stockpiles.

  • Army Seeks Electric Scout By 2025

    October 8, 2020 | International, Land, C4ISR

    Army Seeks Electric Scout By 2025

    SYDNEY J. FREEDBERG JR. The Light Reconnaissance Vehicle, an off-road truck to scout ahead of airborne and light infantry units, could lead the Army's move to electric motors. But electrifying heavy cargo trucks, let alone tanks, could take decades. WASHINGTON: The Army will brief interested companies Oct. 20 on an electric-drive version of the long-delayed Light Reconnaissance Vehicle and the service's emerging strategy to convert its gas-guzzling formations to electric power. The service is working with a non-profit consortium of more than 200 companies and universities developing clean transportation technologies, CALSTART. But the driving logic here is pure Army green, not eco-friendliness. Tactically, electric vehicles accelerate quicker, run cooler, and move quieter than internal combustion ones – advantages that are all especially valuable for stealthy scouts like LRV. They can also run power-hungry high-tech systems, from sensors to lasers, without needing a bulky auxiliary power unit. Logistically, even if the Army has to recharge its electric vehicles from diesel generators, that would actually get more miles per gallon than putting the same fuel directly into an internal combustion vehicle, because electric motors are much more efficient. So electric power could reduce dependence on long supply lines and vulnerable convoys of tanker trucks, which are prime targets for adversaries ranging from Taliban irregulars to Russian missiles. Army and NATO wargames have shown some alarming vulnerabilities in the fuel supply. What's the timeline? “We'd like to see an Electric Light Reconnaissance Vehicle by FY25,” said Maj. Ryan Ressler, who's leading the effort for Army Futures Command. But electrifying the Army's whole fleet of wheeled vehicles – let alone its heavier tracked vehicles – may take decades, starting with light trucks and gradually working up to heavy armor. “You're not going to go straight to an all-electric [fleet]. The battery density is not there for your combat vehicles,” Ressler told me – at least, not yet. “We would like to see all electric vehicles by 2040,” he said. “There might be potential to have all electric vehicles in the near term, if industry can help.” The Oct. 20 industry day will be the first step toward finding out. From Light to Heavy Ressler hopes to have a formal Abbreviated Capabilities Development Document (ACDD) for ELRV approved “in a matter of months,” he told me. “We see this as the first electrified vehicle for the Army ground combat fleet.” Industry feedback on ELRV – and progress on development, if the program goes ahead – will then inform the long-term strategy for Tactical and Combat Vehicle Electrification across the wider fleet. Ressler's team is now drafting what's called an Initial Capabilities Document for TaCVE. To test those concepts out in practice, he added, “we're looking at other potential candidates for electrification right now.” High on that list is the Infantry Squad Vehicle (ISV) being built by GM Defense, an air-droppable light truck designed to carry airborne troops from their drop sites to the objective. Electric vehicles' innate stealth and reduced dependence on fuel supply would be particularly valuable to paratroopers, who operate on the ragged end of long supply lines. There's already been work done on an electric Infantry Squad Vehicle. “An electric prototype representative of the ISV proved it could be whisper-quiet, achieve sprint speed immediately, and offered excess power for extended silent watch mode exceeding current objectives,” according to an Army Futures Command white paper. LRV and ISV are natural partners. The Light Reconnaissance Vehicle was intended to scout ahead of the vulnerable Infantry Squad Vehicles, helping the unarmored transports avoid a lethal ambush. But the Army decided to delay a purpose-built LRV and use the heavier Joint Light Tactical Vehicle (JLTV) as a stopgap scout. So it looks like LRV may have a second chance at life. ISV and LRV are both ultralight vehicles, meant to support airborne troops and other light infantry units that can deploy rapidly by air but after that mostly maneuver on foot. But even light infantry brigades have a small fleet of heavy trucks to carry supplies and special equipment. Mechanized units have a host of armored vehicles – 8×8 wheeled Strykers for medium brigades; tracked tanks, howitzers, missile launchers, and troop carriers for heavy brigades – followed by an even larger number of trucks to carry fuel, spare parts, supplies, and other support. There's already been some progress with these heavier vehicles. BAE Systems is developing an experimental hybrid diesel-electric engine for the M2 Bradley troop carrier. BAE's experimented with hybrid-electric armored vehicles for decades, company exec Andrew Rosenfeld told me – they once built a hybrid as heavy as an M1 Abrams tank – but the company's recent boom in civilian hybrid-electric buses has advanced the state of the art. Their engine for the Bradley can move up to 45 tons, and the same basic design could scale larger or smaller to go in a wide range of other vehicles. The hybrid Bradley uses 10 to 20 percent less fuel during a normal mission, he told me, and it can generate 500 kilowatts of power, enough to run an Army field hospital. On the wheeled side, the Army's Ground Vehicle Systems Center (GVSC, formerly TARDEC) converted an Oshkosh cargo truck, the four-axle M977 HEMTT, to hybrid electric drive for a 2019 demonstration. That Tactical Vehicle Electrification Kit cut the HEMTT's fuel consumption by 15-25 percent, according to the Army Futures Command white paper. TVEK also tripled the truck's capacity to generate power. Increased power generation not only allows an electrified vehicle to have more technology on board, like sensors and weapons. Such vehicles could also park, plug in, and power up soldiers' charging kits, field hospitals, command posts, or radar sites – potentially replacing traditional diesel generators. “The very concept of what constitutes a vehicle has changed,” the white paper argued. “Electrification has transformed vehicles into sensor platforms, communication nodes, and mobile computational hubs.” Just as the F-35 fighter is so full of electronics that a former Air Force Chief of Staff called it “a computer that happens to fly,” electrified ground vehicles could become computers that happen to drive – and not just computers, but mobile charging stations as well. Today's complex and vulnerable supply chain must move large amounts of fuel from refinery to tanker to forward depot to individual vehicles and generators. A future system could be much more decentralized, supplying smaller amounts of fuel to hybrid-electric vehicles, which could then generate power to share with all-electric ones. Such streamlined logistics could make a life-or-death difference in wartime. The Army's concept for future combat, Multi-Domain Operations, calls for individual brigades to operate up to seven days without stopping for resupply. That's unimaginable today. Improving fuel-efficiency of internal combustion engines would make for only “marginal” progress towards the goal, the white paper argued. Truly self-sufficient combat units will require largescale replacement of fossil fuel with electricity, potentially drawn from small, mobile nuclear reactors. “It's fundamental to Multi-Domain Operations,” argued retired Lt. Gen. Eric Wesley, who commissioned the white paper when he was Futures & Concepts Center chief for Army Futures Command. He just took on a private-sector job with Flyer Defense, a maker of lightweight off-road trucks that's now developing an electric-drive vehicle with a small, built-in diesel generator to recharge itself. (This isn't a hybrid-electric drive, since the diesel doesn't' drive the wheels; it just charges the batteries). “Moving energy on the battlefield is the biggest challenge commanders will have in the future,” Wesley told me. But if you electrify your vehicle, he argued, it can “become more than just a combat vehicle: It becomes an energy node [in] a distribution network, where every vehicle is part of your energy distribution plan.” Such a decentralized and flexible system, he argues, is much harder for a Russian missile strike to take out than a fuel depot. https://breakingdefense.com/2020/10/army-seeks-electric-scout-by-2025/

All news