Back to news

July 17, 2024 | Local, Land, Security

Equalization, NATO spending dominate premiers’ meeting

B.C. Premier David Eby backed Newfoundland and Labrador’s legal challenge of the federal equalization payment program, while Manitoba Premier Wab Kinew called on the federal government to meet NATO’s two per cent spending target “within the next four years.”

https://www.ipolitics.ca/news/equalization-nato-spending-dominate-premiers-meeting

On the same subject

  • The Future Canadian Surface Combatant

    November 5, 2020 | Local, Naval

    The Future Canadian Surface Combatant

    By Captain Christopher Nucci, Royal Canadian Navy November 2020 Proceedings Vol. 146/11/1,413 Canada is pursuing a single class of 15 surface combatants for the Royal Canadian Navy (RCN), unlike some of its allies who are building multiple classes of more specialized ships. A single variant Canadian Surface Combatant (CSC) is better than the project's original vision of two variants based on a common hull (the first a task group command/air-defense version, the other a more general-purpose/antisubmarine warfare version). While all naval force structure is essentially driven by national strategic defense and security interests, a single-class solution is based on three principal factors. First, it fits best for Canada's unique naval requirements shaped by its geography, modest fleet size, and the RCN's operational needs. Second, it optimizes effectiveness now and into the future, while responsibly seeking maximum cost efficiencies. Finally, it is an innovative approach that has only recently become both practical and advantageous because of recent technological developments, such as convergence and digitization. The General Purpose Warship Moment Naval force planning decisions must coexist in harmony with decisions regarding a navy's overall fleet mix of capital ships, “high-end” surface combatants, “low-end” combatants, and submarines—and the roles of each type.1 In particular, surface combatants have historically fulfilled one or two warfare roles, such as antiair and antisubmarine warfare. Until recently, fielding an affordable “general purpose warship” was too difficult to achieve. The technological limitations of the latter half of the 20th century and into the first decade of the 21st imposed inescapable constraints stemming from the necessary physical size and power requirements of electronics and equipment, along with the expensive and challenging integration of the various single-purpose weapons, sensors, communications, and command-and-control arrangements (as well as the operations and maintenance personnel) required for each role. These limitations could only be surmounted by increasing space, weight, crew size, and the commensurate complexity. As a result, many navies introduced multiple classes of surface combatants to handle the different warfare roles, as well as low-end ships (at less cost) to have sufficient numbers of ships available to respond to contingencies. For the RCN, with a small force of submarines and no capital ships, the approach until now followed this pattern, with the Iroquois-class destroyers focused until their divestment on task group command and area air defense and the more numerous Halifax-class frigates acting as more general-purpose/antisubmarine warfare platforms. Canada's allies have had to confront similar considerations. For example, in the United Kingdom, the number of hulls and capabilities of the Type 26 (the CSC's parent design, known as the Global Combat Ship) are directly connected to the planned acquisition of less-capable Type 31 frigates, the existence of Type 45 antiair-warfare destroyers, a larger submarine fleet, and the importance of capital ships, such as Royal Navy aircraft carriers. For Australia (which is also acquiring the Type 26/GCS-derived Hunter-class), the requirement to protect amphibious ships, more submarines in the fleet, and a separate class of air-warfare destroyers are key factors. Different requirements ultimately lead to different priorities and trade-off decisions, and Canada's circumstances are unlike any others. Canada's Geography, Fleet Size, and Operational Requirements Aside from the overall fleet mix, the other considerations for any state's naval force structure are the geographic factors, overall fleet size, and operational requirements. In Canada's case, unique geography includes the bicoastal nature of the RCN's homeports in Victoria, British Columbia, and Halifax, Nova Scotia, and the tricoastal areas of responsibility in the Pacific, Arctic, and Atlantic. Each area is very distant from the others, and therefore any timely maritime response generally must come from the closest base. In other words, when you need a ship from the opposite coast for any unexpected reason, it is a long way to go. So, it is best if all ships are equally capable and allocated more or less evenly among homeports. Similarly, the RCN must consider the long-range nature of its ship deployments—even domestic ones—because of the significant distances to anticipated theaters of operation. A single combatant class that can perform a wide range of tasks while remaining deployed best meets this challenge and provides more options to government when far away from homeport. For example, a CSC operating in the Asia-Pacific region as an air-defense platform for an allied amphibious task group can quickly respond to a requirement to hunt an adversary's submarine, if needed. Similarly, assembling a national naval task group of several multirole CSCs in response to a crisis is much more achievable when the RCN can draw from the whole surface combatant fleet to assign ships at the necessary readiness levels. The alternative may not guarantee a sufficient number of specialized variants needed for the task when the call comes. In other words, if any one ship becomes unavailable to perform a task for any reason, there is more depth available in the fleet to fill the gap and complete the mission. Consequently, having more ships of similar capabilities ensures a higher rate of operational availability, which is especially important with the RCN's relatively modest fleet size. For small fleets, a “high/low” mix of warships or multiple classes of more specialized combatants actually constrains operational availability. Cost-Saving Value While increasing complexity would ordinarily imply increasing cost, a single class of ships can actually present opportunities to increase cost efficiency. First, a single class of ships eliminates duplication of fixed program costs such as design and engineering and, during ship construction, further eliminates additional costs derived from retooling and pausing work in the shipyard between the construction of different classes, while achieving better learning curves and lowering overall costs per unit compared with two shorter construction runs. As each ship enters service, a single ship class in sufficient numbers has dedicated supply chains and more efficiency and equipment availability from the provision of common parts (especially given that two allies are procuring additional ships based on the common Type 26/GCS design.) Higher cost efficiencies in maintenance from labor specialization also can be expected, as well as the ability for more efficient repair training and use of required ship repair facilities and equipment. Furthermore, training costs associated with a single class are reduced through the ability to deliver common training modules to a larger student cohort, while simultaneously allowing for deeper knowledge and specialist personnel development among a larger pool of available crew with common qualifications. This latter point cannot be overstated—crew availability is a key requirement for operational availability, and the efficiencies made possible with a single set of common qualifications and training enables a larger pool of available personnel to deploy and more flexibility for sustained operations at the unit level. It includes Royal Canadian Air Force maritime helicopter crews and embarked unmanned systems specialists, as well as Army, special operations forces, and even Royal Canadian Mounted Police personnel in a law enforcement mission who would require no additional conversion training between classes once familiar with the CSC's modular mission bay arrangement or boat launching procedures. An Opportunity Enabled by Modern Technology Compared with a few decades ago, several recent technological developments are making multirole ships much more practical. Information-age innovation is, in essence, enabling all the potential advantages a single class of surface combatants while minimizing the traditional disadvantages. For example, any operations room or bridge display can now easily show video or data feeds from any sensor, weapon, or software support system—convergence. Likewise, instead of several stand-alone unmanned systems controllers, consoles that can control any of the ship's unmanned air, surface, or subsurface system are becoming available. Widespread digitization has reduced space requirements, while increasing system capability, flexibility, and power and cooling efficiency. This miniaturization allows for smaller components that can fit into smaller spaces. Multifunctionality can now be found in all kinds of components. For example, a single digital beam-forming radar can replace multiple traditional radars, software-defined radios can support different communications requirements on the fly, programmable multipurpose weapons can engage more than one kind of target but be fired from a common vertical launcher, and decoy launchers can now deploy a variety of defensive munitions. Multifunctionality even extends beyond individual systems to encompass features like the CSC's modular mission bay—a reconfigurable space able to accommodate and integrate any containerized payload imaginable. With an air-transportable, container-based set of payloads, embarking additional specialized equipment or capabilities into a deployed ship during an overseas port visit can be done in just a few days. These developments enable a single ship to rapidly transition to and execute many naval roles while defending itself against a myriad of threats. Although a ship's overall capacity (e.g., the desired number of crew accommodated, missiles embarked, unmanned systems carried, endurance and seakeeping performance, etc.) will still be constrained by its size, a single ship class can have a full range of capabilities. The CSC balances multirole capabilities with a modest amount of capacity. For example, it has one main gun and 32 vertical-launch cells, one helicopter, one mission bay, one multifunction radar, and the ability to embark approximately 204 personnel for crew and mission personnel. Further technological development and additional advantages will accrue from operating a single ship class, such as those from software development and data analytics. For example, the analysis of detailed technical data, such as system-error codes, from across the entire class in near-real time enables the efficient updating of control software to improve cyber security. Or, consider the ability to perform virtual research and development work on a digital twin of a physical system, such as a gas turbine, to examine performance limitations without risking the equipment itself. Data analytics performed on the same system when a part fails can help determine which sensors are critical and what patterns are early indicators of impending failure. This will allow the crew to perform preventive maintenance before the system fails catastrophically and should prevent failures in the other ships of the class. In a connected world, it is even possible to rapidly and remotely inject operational capability enhancements to deployed ships. Ultimately, the relative ease with which the software elements of a combat system can be changed will allow ships of the same class a greater capability to act and react with agility, the most efficient way to maximize potential for a relatively small fleet. Acknowledging the unique Canadian geographical and operational requirements, the imposed limitations on naval force structure, and the need to maximize the RCN's effectiveness while seeking cost efficiencies calls for a single class of surface combatant—the current CSC project. Canada will benefit from this innovative solution for decades. The RCN is well-positioned to make the most of this new platform and the inherent flexibility and multirole capabilities it will bring. The Canadian government's decision to move forward with the CSC program as a single surface combatant class is not only eminently feasible, but also the most sensible for the situation we face. https://www.usni.org/magazines/proceedings/2020/november/future-canadian-surface-combatant

  • Land Sector Opportunities

    April 30, 2020 | Local, Land

    Land Sector Opportunities

    In the coming months, OEMs who have been pre-qualified will be looking for a Canadian supplier in order to optimize their value proposition in order to obtain an important contract with the Canadian Government for the Logistics Vehicle Modernization (LVM) project and the Enhanced Recovery Capability (ERC) project. So there will be business opportunities for Quebec compagnies, especially for those having land vehicle, service support and armor capabilities. If you would like to know more about these opportunities, please contact Mathieu Poirier of Canada Economic Development for Quebec Regions at the following email address: mathieu.poirier@canada.ca For further information : Logistics Vehicle Modernization (LVM https://buyandsell.gc.ca/procurement-data/tender-notice/PW-BW-005-27293 Enhanced Recovery Capability (ERC) project https://buyandsell.gc.ca/procurement-data/tender-notice/PW-BL-316-27602

  • The Royal Canadian Navy to receive a sixth Arctic and Offshore Patrol Ship

    November 2, 2018 | Local, Naval

    The Royal Canadian Navy to receive a sixth Arctic and Offshore Patrol Ship

    November 2, 2018 – Halifax, Nova Scotia – National Defence / Canadian Armed Forces As part of Strong, Secure, Engaged: Canada's Defence Policy, the Government of Canada is acquiring the Arctic and Offshore Patrol Ships (AOPS) to bolster the Royal Canadian Navy's capabilities while equipping its women and men with versatile and reliable vessels to complete their vital missions. Today, the Honourable Harjit S. Sajjan, Minister of National Defence announced that the Royal Canadian Navy will receive a sixth patrol ship, which will help sustain hundreds of highly-skilled middle class jobs at Irving shipyards. The Royal Canadian Navy needs a diversified fleet to respond to the challenges it faces today and will face well into the future. The AOPS will patrol Canada's oceans, including the Arctic, and are perfectly suited for missions abroad to support international partners, humanitarian aid, disaster relief, search and rescue, and drug interdiction. A sixth patrol ship will greatly increase the capacity of the Royal Canadian Navy to deploy AOPS simultaneously, at home or abroad. Additionally, a fleet of six AOPS will allow our frigates to focus on further tasks, allowing the RCN to use its fleet more effectively. The Government of Canada is also committed to providing the best economic opportunities for Canadians. Through the National Shipbuilding Strategy, the Government of Canada is providing the Royal Canadian Navy with safe and effective vessels to carry out their missions, while providing meaningful economic opportunities for Canadians. Quotes “I am delighted to confirm today that the Royal Canadian Navy will receive a sixth Arctic and Offshore Patrol Ship, as outlined in our defence policy, Strong, Secure, Engaged. This versatile vessel will offer greater capabilities to our women and men who will sail on the AOPS and will bolster the RCN's future operational capacity.” Harjit S. Sajjan, Defence Minister “The National Shipbuilding Strategy continues to create social and economic benefits for Canadians from coast-to-coast-to-coast. The construction of the sixth Arctic and Offshore Patrol Ship underscores our commitment to maximizing stable employment for our skilled shipbuilders, while supporting the brave women and men of the Royal Canadian Navy in their important work.” Carla Qualtrough, Minister of Public Services and Procurement and Accessibility “I could not be more pleased with the decision to proceed with the construction of the sixth AOPS. These ships will enhance the RCN's capacity to operate in the North, while continuing to contribute to a wide range of security, humanitarian and capacity building operations at home and around the world.” Vice-Admiral Ron Lloyd, Commander Royal Canadian Navy Quick facts The decision for a sixth ship was made possible after ensuring adequate funding for the acquisition of the ship, as well as the modified production schedule. The Arctic and Offshore Patrol Ships will significantly enhance the Canadian Armed Forces' capabilities and presence in the Arctic, as well as augment their presence on the Atlantic and Pacific coasts, better enabling the Royal Canadian Navy to safeguard Canadian Arctic sovereignty. The AOPS are highly versatile platforms that can be used on a variety of missions at home and abroad, such as coastal surveillance, search and rescue, drug interdiction, support to international partners, humanitarian aid, and disaster relief. Three ships are in full production and steel cutting for the fourth ship is planned for this winter. The first AOPS is now in the water and is expected to be delivered to the Royal Canadian Navy in summer 2019. Associated links Arctic and Offshore Patrol Ships Future HMCS Harry DeWolf given official title at naming ceremony HMCS Harry DeWolf National Shipbuilding Strategy Industrial and Technological Benefits Policy Contacts Byrne Furlong Press Secretary Office of the Minister of National Defence 613-996-3100 Media Relations Department of National Defence Phone: 613-996-2353 Email: mlo-blm@forces.gc.ca https://www.canada.ca/en/department-national-defence/news/2018/11/the-royal-canadian-navy-to-receive-a-sixth-arctic-and-offshore-patrol-ship.html

All news