Back to news

February 18, 2019 | International, C4ISR

DARPA: Teaching AI Systems to Adapt to Dynamic Environments

Current AI systems excel at tasks defined by rigid rules – such as mastering the board games Go and chess with proficiency surpassing world-class human players. However, AI systems aren't very good at adapting to constantly changing conditions commonly faced by troops in the real world – from reacting to an adversary's surprise actions, to fluctuating weather, to operating in unfamiliar terrain. For AI systems to effectively partner with humans across a spectrum of military applications, intelligent machines need to graduate from closed-world problem solving within confined boundaries to open-world challenges characterized by fluid and novel situations.

To attempt this leap, DARPA today announced the Science of Artificial Intelligence and Learning for Open-world Novelty (SAIL-ON) program. SAIL-ON intends to research and develop the underlying scientific principles and general engineering techniques and algorithms needed to create AI systems that act appropriately and effectively in novel situations that occur in open worlds. The program's goals are to develop scientific principles to quantify and characterize novelty in open-world domains, create AI systems that react to novelty in those domains, and to demonstrate and evaluate these systems in a selected DoD domain. A Proposers Day for interested proposers is scheduled for March 5, 2019, in Arlington, Virginia: https://go.usa.gov/xEUWh

“Imagine if the rules for chess were changed mid-game,” said Ted Senator, program manager in DARPA's Defense Sciences Office. “How would an AI system know if the board had become larger, or if the object of the game was no longer to checkmate your opponent's king but to capture all his pawns? Or what if rooks could now move like bishops? Would the AI be able to figure out what had changed and be able to adapt to it?”

Existing AI systems become ineffective and are unable to adapt when something significant and unexpected occurs. Unlike people, who recognize new experiences and adjust their behavior accordingly, machines continue to apply outmoded techniques until they are retrained.

Given enough data, machines are able to do statistical reasoning well, such as classifying images for face-recognition, Senator said. Another example is DARPA's AI push in self-driving cars in the early 2000s, which led to the current revolution in autonomous vehicles. Thanks to massive amounts of data that include rare-event experiences collected from tens of millions of autonomous miles, self-driving technology is coming into its own. But the available data is specific to generally well-defined environments with known rules of the road.

“It wouldn't be practical to try to generate a similar data set of millions of self-driving miles for military ground systems that travel off-road, in hostile environments and constantly face novel conditions with high stakes, let alone for autonomous military systems operating in the air and on sea,” Senator said.

If successful, SAIL-ON would teach an AI system how to learn and react appropriately without needing to be retrained on a large data set. The program seeks to lay the technical foundation that would empower machines, regardless of the domain, to go through the military OODA loop process themselves – observe the situation, orient to what they observe, decide the best course of action, and then act.

“The first thing an AI system has to do is recognize the world has changed. The second thing it needs to do is characterize how the world changed. The third thing it needs to do is adapt its response appropriately,” Senator said. “The fourth thing, once it learns to adapt, is for it to update its model of the world.”

SAIL-ON will require performers and teams to characterize and quantify types and degrees of novelty in open worlds, to construct software that generates novel situations at distinct levels of a novelty hierarchy in selected domains, and to develop algorithms and systems that are capable of identifying and responding to novelty in multiple open-world domains.

SAIL-ON seeks expertise in multiple subfields of AI, including machine learning, plan recognition, knowledge representation, anomaly detection, fault diagnosis and recovery, probabilistic programming, and others. A Broad Agency Announcement (BAA) solicitation is expected to be posted in the near future and will be available on DARPA's FedBizOpps page: http://go.usa.gov/Dom

https://www.darpa.mil/news-events/2019-02-14

On the same subject

  • Le Boeing F-15 QA réalise son premier vol

    April 16, 2020 | International, Aerospace

    Le Boeing F-15 QA réalise son premier vol

    Boeing a effectué avec succès le premier vol du chasseur F-15QA, version la plus avancée du F-15 développée pour l'armée de l'air qatarie (QEAF). L'avion a démontré ses capacités au cours d'un vol de 90 minutes. L'appareil a décollé et a atterri de l'aéroport international Lambert à Saint-Louis. Cure de jouvence pour le F-15 Enfin une bonne nouvelle pour Boeing, même si le F-15 n'est plus vraiment ce que l'on peut appeler un appareil de première fraîcheur. L'avionneur de Saint Louis (ex division McDonnell Douglas en conséquence) a effectué avec succès le premier vol du chasseur F-15QA, version la plus avancée du F-15 développée pour l'armée de l'air qatarie (QEAF). L'avion a démontré ses capacités au cours d'un vol de 90 minutes. L'appareil a décollé et a atterri de l'aéroport international Lambert à Saint-Louis. « Nous sommes très fiers de cet accomplissement et nous nous réjouissons avec beaucoup d'enthousiasme des succès continus de ce programme », a déclaré le colonel Ahmed Al Mansoori, commandant de l'escadre F-15 de la QEAF. « Ce premier vol réussi est une étape importante qui rapproche nos escadrons d'un pas vers le pilotage de cet avion au-dessus du ciel du Qatar. » 9G L'équipe d'essais en vol de Boeing, dirigée par le pilote d'essai en chef Matt Giese, a mis en place une liste de vérification précise de la mission pour tester les capacités de l'avion multirôle. L'avion a démontré sa maniabilité lors de son décollage vertical en tirant neuf G, soit neuf fois la force de la gravité terrestre, au cours de ses manœuvres subséquentes dans l'espace aérien d'essai. Les vérifications des systèmes tels que l'avionique et le radar ont également été couronnées de succès. Une équipe d'essai qui surveillait les données en temps réel a confirmé que l'avion s'était comporté comme prévu. 6,2 MD$ pour 36 avions Le département américain de la Défense a attribué à Boeing un contrat de 6,2 milliards de dollars en 2017 pour la fabrication de 36 avions de chasse F-15 pour la QEAF. Boeing commencera à livrer des avions au client en 2021. De plus, Boeing a obtenu un contrat de vente militaire à l'étranger de l'US Air Force en 2019 pour les équipages F-15QA et la formation à la maintenance pour la QEAF. Le F-15QA apporte à ses exploitants des technologies modernes telles que les commandes de vol CDVE (commandes de vol électriques), cockpit numérique, capteurs modernisés, radars et des capacités de guerre électronique. L'augmentation de la fiabilité, de la durabilité et de la maintenance permet aux opérateurs de défense de rester en avance sur les menaces actuelles et en évolution. Vers le F-15EX pour l'USAF Gr'ce à des investissements dans la plate-forme F-15QA et un partenariat avec l'US Air Force, Boeing se prépare maintenant à construire une variante nationale du chasseur avancé, le F-15EX. Huit appareils devraient être assemblés pour commencer, les plans futurs prévoient jusqu'à 144 appareils. https://www.air-cosmos.com/article/le-boeing-f-15-qa-ralise-son-premier-vol-22929

  • Contracts for October 29, 2021

    November 1, 2021 | International, Aerospace, Naval, Land, C4ISR, Security

    Contracts for October 29, 2021

    Today

  • Navy, Marine Corps pitched three systems for first Replicator batch

    May 16, 2024 | International, Naval

    Navy, Marine Corps pitched three systems for first Replicator batch

    An acquisition official said the Navy and Marine Corps brought three systems to Replicator, but declined to clarify whether all were selected.

All news