Back to news

January 25, 2021 | International, C4ISR, Security

Cyberdéfense des Armées : forte augmentation des effectifs à Rennes

Selon une étude publiée jeudi 21 janvier par l'INSEE Bretagne, les effectifs des Armées en cyberdéfense seront en forte augmentation sur le territoire de Rennes Métropole jusqu'en 2025. Le développement des activités de cyberdéfense du ministère des Armées dans l'agglomération rennaise devrait se traduire par la création de 1 800 postes entre 2018 et 2025, et par des recrutements, précise La Tribune. Le quartier de La Courrouze abrite la Cyberdéfense Factory, un incubateur civil et militaire, ainsi que plusieurs groupes industriels de plus de 100 salariés et impliqués dans cet écosystème. Airbus Cybersecurity (protection des gouvernements et des activités vitales), Thales Services, Altran et la CyberSoC d'Orange Cyberdéfense concentrent à eux seuls 70% de l'emploi privé. « La présence du pôle d'excellence cyber permet le développement de synergies entre la recherche, la formation et les acteurs économiques », précise l'INSEE.

La Tribune du 25 janvier

On the same subject

  • US Navy awards contract to Raytheon for precision landing systems

    June 19, 2019 | International, Aerospace

    US Navy awards contract to Raytheon for precision landing systems

    The US Navy has awarded a $234m initial low-rate production contract to Raytheon to manufacture 23 joint precision approach and landing systems (JPALS). The global positioning system (GPS) enabled precision landing systems will be outfitted on all of the navy's nuclear-powered aircraft carriers and amphibious assault ships. JPALS has the capability to guide aircraft to precision landings in all weather and surface conditions. The US Marine Corps' F-35B Lightning II fighter aircraft use Raytheon's JPALS to land on USS Wasp amphibious assault ship. Raytheon Intelligence, Information and Services business vice-president Matt Gilligan said: “The US Navy understands how JPALS contributes to their mission success and safety of its people. “Other military services could also benefit from the system's ability to safely land both fixed and rotary-wing aircraft in almost any low-visibility environment.” Last year, the F-35B pilots began using the system to guide them onto USS Wasp during a deployed operation. In April this year, Raytheon demonstrated land-based deployable version of the JPALS system. The version is designed to provide the same precision capability offered in ship-landings. As part of the demonstration, F-35B pilots used the GPS-based system on the jet to connect with the expeditionary system on the ground from 200nm away. Raytheon used the proof-of-concept event to showcase how the JPALS system could be reconfigured into a mobile version to guide aircraft to land in a traditional airport setting. The expeditionary JPALS version currently fits in five transit cases. The company noted that the system could be repackaged for small, transit vehicles that are transportable by C-130. It can be set up in less than 90 minutes, once on the ground. The technology will help US Air Force pilots to perform landings on austere runways in remote regions. https://www.naval-technology.com/news/us-navy-awards-contract-to-raytheon-for-precision-landing-systems/

  • DARPA Seeks to Make Scalable On-Chip Security Pervasive

    March 29, 2019 | International, C4ISR, Security, Other Defence

    DARPA Seeks to Make Scalable On-Chip Security Pervasive

    For the past decade, cybersecurity threats have moved from high in the software stack to progressively lower levels of the computational hierarchy, working their way towards the underlying hardware. The rise of the Internet of Things (IoT) has driven the creation of a rapidly growing number of accessible devices and a multitude of complex chip designs needed to enable them. With this rapid growth comes increased opportunity for economic and nation-state adversaries alike to shift their attention to chips that enable complex capabilities across commercial and defense applications. The consequences of a hardware cyberattack are significant as a compromise could potentially impact not millions, but billions of devices. Despite growing recognition of the issue, there are no common tools, methods, or solutions for chip-level security currently in wide use. This is largely driven by the economic hurdles and technical trade-offs often associated with secure chip design. Incorporating security into chips is a manual, expensive, and cumbersome task that requires significant time and a level of expertise that is not readily available in most chip and system companies. The inclusion of security also often requires certain trade-offs with the typical design objectives, such as size, performance, and power dissipation. Further, modern chip design methods are unforgiving – once a chip is designed, adding security after the fact or making changes to address newly discovered threats is nearly impossible. “Today, it can take six to nine months to design a modern chip, and twice as long if you want to make that same design secure,” said Serge Leef, a program manager in DARPA's Microsystems Technology Office (MTO). “While large merchant semiconductor companies are investing in in-house personnel to manually incorporate security into their high-volume silicon, mid-size chip companies, system houses, and start-ups with small design teams who create lower volume chips lack the resources and economic drivers to support the necessary investment in scalable security mechanisms, leaving a majority of today's chips largely unprotected.” To ease the burden of developing secure chips, DARPA developed the Automatic Implementation of Secure Silicon (AISS) program. AISS aims to automate the process of incorporating scalable defense mechanisms into chip designs, while allowing designers to explore economics versus security trade-offs and maximize design productivity. The objective of the program is to develop a design tool and IP ecosystem – which includes tool vendors, chip developers, IP licensers, and the open source community – that will allow security to be inexpensively incorporated into chip designs with minimal effort and expertise, ultimately making scalable on-chip security pervasive. Leef continued, “The security, design, and economic objectives of a chip can vary based on its intended application. As an example, a chip design with extreme security requirements may have to accept certain tradeoffs. Achieving the required security level may cause the chip to become larger, consume more power, or deliver slower performance. Depending on the application, some or all of these tradeoffs may be acceptable, but with today's manual processes it's hard to determine where tradeoffs can be made.” AISS seeks to create a novel, automated chip design flow that will allow the security mechanisms to scale consistently with the goals of the design. The design flow will provide a means of rapidly evaluating architectural alternatives that best address the required design and security metrics, as well as varying cost models to optimize the economics versus security tradeoff. The target AISS system – or system on chip (SoC) – will be automatically generated, integrated, and optimized to meet the objectives of the application and security intent. These systems will consist of two partitions – an application specific processor partition and a security partition implementing the on-chip security features. This approach is novel in that most systems today do not include a security partition due to its design complexity and cost of integration. By bringing greater automation to the chip design process, the burden of security inclusion can be profoundly decreased. While the threat landscape is ever evolving and expansive, AISS seeks to address four specific attack surfaces that are most relevant to digital ASICs and SoCs. These include side channel attacks, reverse engineering attacks, supply chain attacks, and malicious hardware attacks. “Strategies for resisting threats vary widely in cost, complexity, and invasiveness. As such, AISS will help designers assess which defense mechanisms are most appropriate based on the potential attack surface and the likelihood of a compromise,” said Leef. In addition to incorporating scalable defense mechanisms, AISS seeks to ensure that the IP blocks that make up the chip remain secure throughout the design process and are not compromised as they move through the ecosystem. As such, the program will also aim to move forward provenance and integrity validation techniques for preexisting design components by advancing current methods or inventing novel technical approaches. These techniques may include IP watermarking and threat detection to help validate the chip's integrity and IP provenance throughout its lifetime. AISS is part of the second phase of DARPA's Electronics Resurgence Initiative (ERI) – a five-year, upwards of $1.5 billion investment in the future of domestic, U.S. government, and defense electronics systems. Under ERI Phase II, DARPA is exploring the development of trusted electronics components, including the advancement of electronics that can enforce security and privacy protections. AISS will help address this mission through its efforts to enable scalable on-chip security. DARPA will hold a Proposers Day on April 10, 2019 at the DARPA Conference Center, located at 675 North Randolph Street, Arlington, Virginia 22203, to provide more information about AISS and answer questions from potential proposers. For details about the event, including registration requirements, please visit: https://www.fbo.gov/index?s=opportunity&mode=form&id=6770487d820ee13f33af67b0980a7d73&tab=core&_cview=0 Additional information will be available in the forthcoming Broad Agency Announcement, which will be posted to www.fbo.gov. https://www.darpa.mil/news-events/2019-03-25

  • Will commercial and military launch programs ever be truly complementary?

    April 29, 2020 | International, Aerospace

    Will commercial and military launch programs ever be truly complementary?

    By: Kirk Pysher In a few months, the U.S. Air Force will choose two of the four competing space companies to provide five years of launches in the National Security Space Launch (NSSL) program. One of the core objectives for this program is to increase affordability by leveraging the technologies and business models of the commercial launch industry. Is that a realistic expectation given the current commercial space market and historical precedents? Historically, the commercial launch market has seen significant variability. Launches of commercial communication satellite constellations began in the early 1970s with NASA serving as the launch provider. New launch providers began to emerge from the commercial world after the Commercial Space Launch Act of 1984 allowed the private sector to provide launch services. We then witnessed a remarkable growth in commercial space launches in the 1990s that peaked just before the turn of the century. Then, until about 2014, the commercial launch market stabilized at 20-25 commercial geostationary orbit satellites per year that were split essentially between three global launch suppliers. Since then, new entrants into the commercial launch market and pricing pressure from terrestrial-based communication systems have significantly impacted the viability of the commercial launch market, reducing profit margins and returns on investment across the board. The expected 20-25 commercial GEO missions is now in the range of 10-15 launches per year and is expected to remain at that level beyond the NSSL five-year period of performance. With new entrants into the commercial launch market, that 40-50 percent reduction in annual launch opportunities will now be competed among seven to eight global launch providers, putting further pressure on the viability of those launchers. Additionally, commercial launch revenue is also expected to decrease over that period by as much as 30 percent as satellite operators look to reduce their launch cost through shared launch, smaller spacecraft and reduced launch pricing. Given the projected commercial launch market and additional competition from new entrants, launch service providers will have difficultly building and maintaining viable commercial launch business plans, let alone having commercial launch-driven capital to invest in new technology. History has proven that no commercial launch service provider can succeed without having an anchor government customer. The commercial launch market simply has not been able to provide the stable, long-term demand needed to maintain affordable pricing, innovation and factory throughput for the Air Force to benefit from. History has also demonstrated that it is the Air Force with NSSL since 2003 that has provided the launch service providers with a stable number of launches. The defense and commercial launch markets have a fundamental difference. The former focuses strictly on satisfying national security mission requirements in space — needs that are driven by risk, strategy and geopolitical events regardless of vulnerabilities in commercial markets. The defense market began in the late 1950s with industry designing, developing and building launch vehicles for the U.S. government to place critical national security satellites into orbit. Early on, we saw a large number of launches in the beginning — peaking at more than 40 in 1966 — before activity levels decreased to level out by 1980. After more than 400 launches of defense-related satellites, the defense launch market finally settled into an average eight launches annually, whereas the commercial launch market is strictly tied to the ability of global satellite operators to close business plans and obtain institutional and/or private funding on new and replacement satellites. The global COVID-19 pandemic is a stark reminder of the vulnerability of all commercial markets. Airlines, aircraft manufacturers and commercial space companies are needing to seek tens of billions of dollars in government assistance; and private commercial space investors are also reassessing their risk postures, as is demonstrated by the recent OneWeb bankruptcy filing. Given the projected decline in commercial launch along with the historical precedents, there would be significant risk for the Air Force to expect to leverage benefit from commercial launch. In fact, I believe history has demonstrated that it is commercial launch that is able to leverage the benefits derived from the steady cadence of defense and civil government launches. The Air Force, in its role as anchor customer, needs to clearly understand commercial market dependencies and business cases of its key providers. With that understanding, the Air Force will mitigate any risk of critical national security missions being dependent on a finicky and fluctuating commercial market. Kirk Pysher is an aerospace executive with more than 20 years in the commercial launch market, serving most recently as the president of International Launch Services until October 2019. https://www.defensenews.com/opinion/commentary/2020/04/28/will-commercial-and-military-launch-programs-ever-be-truly-complementary/

All news