September 29, 2021 | International, Aerospace, C4ISR
Space Force awards $88 million in contracts for launch system prototyping
The contracts will help launch providers develop transformational capabilities, according to the Space Force.
July 31, 2018 | International, Land, C4ISR
CAPITOL HILL: The Army has a new, two-pronged strategy for Signals Intelligence, its top intelligence official said at a recent forum here. First, SIGINT forces must continue their post-9/11 evolution from a secretive, insular priesthood to a hands-on helper for frontline troops. At the same time, SIGINT must scale up the “precision” techniques developed to track insurgents‘ and terrorists‘ transmissions so it can tackle much bigger and more sophisticated adversaries like Russia and China.
Instead of pinpointing terrorist leaders for drone strikes or commando raids, SIGINT may be finding electronic weak points in enemy networks that US cyber and electronic warfare teams can then hack or jam.
There is a foundation of success to build on, Army leaders told the Capitol Hill forum, which was organized by the Association of Old Crows, the leading professional association for electronic warfare. Intelligence in general and SIGINT in particular, they said, have gotten better integrated with other Army branches since 9/11 — and especially since 2016.
“It has been a remarkable two years,” said Brig. Gen. Jennifer Buckner. Formerly deputy commander of Joint Task Force ARES, which led Cyber Command operations against ISIS, she is now cyber director in Section G-3/5/7 of the Army's Pentagon staff. Increasingly close cooperation between intelligence analysts and tactical commanders, she said, has made it possible “to normalize operations like this so we truly are using the intelligence to inform and enable further targeting.”
Ultimately, said the Army's deputy chief of staff for intelligence (G-2), Lt. Gen. Scott Berrier, the Army and its fellow services need to integrate intelligence, cyber warfare, and electronic warfare to realize their vision of Multi-Domain Operations, in which US forces launch coordinated attacks, both physical and electronic, from land, sea, air, space, and cyberspace.
Over 17 years of fighting terrorists and insurgents, “our SIGINT forces mastered the art and science of identifying and tracking individual threats with pinpoint precision,” Berrier told the forum. “We now face a significant challenge on a much larger scale, combat operations with near-peer and peer competitors.”
Even if we never fight Russia or China directly, Berrier said — and let's hope we never do — we'll face the technology they sell around the world. In places like Ukraine, US partners are already fighting Russian proxies. So to meet this challenge, Berrier said, he recently approved a Signals Intelligence strategy with four main lines of effort:
Thanks to enthusiastic support from both Army Chief of Staff, Gen. Mark Milley, and recently departed chief of Pacific Command, Adm. Harry Harris, an experimental unit called the Multi-Domain Task Force is already exercising some of these concepts in PACOM. It's built around an Army artillery brigade — both cannons and long-range missiles — augmented with long-range sensors to find targets and an integrated Intelligence, Cyber, & Electronic Warfare (ICEW) team that can stage non-physical attacks.
“If you want to shoot 500 or a thousand miles, you have to see 500 or a thousand miles,” Berrier said. “This is the way of the future.” Getting there, though, requires overcoming the ways of the past.
The “Green Door” Problem
For generations, Army commanders have complained that Signals Intelligence operated behind a “green door” of security restrictions that kept them from sharing vital intelligence in time to act on it. For its part, Army SIGINT tended to see its primary customer as the National Security Agency, not combat units. In this context, the SIGINT community was leery of anyone actually taking action based on intelligence, lest it give away a source of long-term strategic value for a short-term tactical gain.
But in Afghanistan, Iraq, and Syria, the US military was trying to find, target, and capture or kill key insurgents and terrorists, who kept constantly on the move. That meant intelligence on their location had to get to tactical commanders fast, before the target moved again. If you wanted the drone to fire the Hellfire at the right target, or the special operators to kick down the right door, you needed to bust down the green door first.
Conversely, once ground troops grabbed a High Value Target, they had to get his cellphone, laptop, and other devices to the intelligence analysts ASAP so his contacts could be tracked down and special operators could go after them before they scattered. The result was a self-reinforcing cycle that generated much more intelligence than you'd get by just passively listening to the enemy.
So today, tight integration between signals intelligence and tactical commanders for such “intelligence-driven operations” has become almost routine — on a small scale. But there's a big difference between targeting a Taliban bomb-maker on his cellphone in someone's garage as opposed to a Russian general on a high-security network in the middle of a tank division.
For the many scenarios in high-end warfare when a target is too well-protected for other forces to bomb or capture, the Army wants the option to hack the target's network or jam its radio signals — to disrupt what it cannot destroy. That requires SIGINT to hand the target data to so-called “non-kinetic” ways of disrupting the enemy through cyber and electronic warfare. But there's a profound institutional imbalance here.
SIGINT is one of the most influential and well established technical branches of the Army, in large part due to its intimate relationship with the NSA. But cyber is the newest branch, albeit benefiting from rapid growth and high-level attention, with its offensive capabilities highly secret and tightly restricted. And Army electronic warfare was largely disbanded after the Cold War and remains a small, underfunded force with very little actual hardware beyond short-range jammers to keep roadside bombs from detonating.
So while the “green door” between intelligence and operations may have been kicked down, very real barriers remain between intelligence, cyber, and electronic warfare.
The CENTCOM Model
Central Command — which oversees Afghanistan, Iraq, and Syria — has forced intelligence officers and combat commanders to work together in new ways, said Lt. Gen. Stephen Fogarty. This is possible, in part, because intelligence has gotten better at “sanitizing” information so tactical operators can use it without inadvertently revealing intelligence sources and methods, he said. But intel has also grown more willing to take the “tremendous risk” that something might slip out anyway, because the greater risk was that not acting on the intelligence would cost lives.
Fogarty lived all this first-hand. Now head of Army Cyber Command, he was previously head of the Army cyber school at Fort Gordon and the top intelligence officer (J-2) for Afghanistan and, later, CENTCOM as a whole. But Fogarty's far from alone: Not only his fellow high-level panelists, but two veterans in the audience members on Capitol Hill — a young officer and a retired general — took the microphone to agree with him.
“What I saw in theater, [in] my time in CENTCOM and multiple trips to Afghanistan, is that SIGINT drove operations...down to the most tactical level,” Fogarty said. National Security Agency SIGINTers — “both civilian and military” — were actually sitting side-by-side with combat officers in Army brigade headquarters and, in some cases, even on company-sized Combat Outposts (COPs), he said. (This is very similar to how the National Reconnaissance Office has operated over the last decade on the battlefield with its Field Representative program.)
Now many of the company, battalion, and brigade commanders who grew accustomed to this close support are leading the Army. “The guys who were lieutenants, captains, majors, lieutenant colonels that are now two, three, and four stars today, that's what they expect,” Fogarty said.
Of course, what broke down the traditional barriers between intelligence and operations was “the tremendous pressure” of wartime, when US and allied lives were in danger every day. “What we've got to make sure,” Fogarty said, “is we maintain that pressure and that we don't regress to where we were potentially back in the Cold War.”
What's New?
So what is Army intelligence actually doing to build on the counterterrorist successes of the past and prepare for a great power conflict in the future?
Most immediately, the Army is changing how it trains, everything from new schoolhouse courses for officers to new field exercises for entire brigades.
When an infantryman or tanker gets promoted to a leadership role, Berrier noted, they attend specialized courses to help them develop a bigger-picture perspective on the battlefield. For their part, intelligence leaders need to go beyond technical training in purely intelligence tasks — as complex and challenging as that is — and learn how to “integrate our highly technical skills into tactical formations” alongside infantry, armor, artillery, aviation, cyber/electronic warfare, and the rest.
Intelligence soldiers and officers also need to practice their technical and tactical skills in real-world conditions. That's not easy to arrange. First, the law is far more restrictive of training in the US than operations overseas, especially when it comes to intelligence collection in the vicinity of US citizens. Second, the electromagnetic transmissions SIGINTers need to practice detecting can interfere with civilian electronics, and the Army doesn't want to fight the FCC. Training for electronic warfare, which involves deliberately disrupting signals, is even trickier.
The best site for such training in the US, not coincidentally, is the Army Electronic Proving Ground at Fort Huachuca, home of the intelligence branch. Berrier commanded Fort Huachuca until he handed the job over to Maj. Gen. Robert Walters. Since units testing or training there are isolated from civilian population centers by broad deserts and high mountains, Walters told the Capitol Hill forum, “they can turn their jammers on and we don't have planes crashing in Tucson.”
Unfortunately, US electronic warriors don't have many jammers to turn on, not yet. (We'll delve into that tomorrow). But at least Army SIGINT systems like Prophet can train at Huachuca on detecting and analyzing real signals. The Army is also trying to replicate or simulate enemy signals at its Combat Training Centers in California, Louisiana, and Germany. Even so, some aspects of high-tech, high-intensity warfare may only be replicable in simulations, Berrier said. The Army's key tool here is a simulator called IEWTPT, the Intelligence Electronic Warfare Tactical Proficiency Trainer.
Training to do better with current technology, however, is not enough. Current systems were designed and fielded at a time when the US could operate freely in the electromagnetic spectrum, Berrier said, where the main problem was not enemy activity but inadvertent interference from other US systems (known as “electronic fratricide” or “blue on blue”). Against Russia, China — or anyone who's bought their latest systems — the spectrum will become a battlefield. So the Army needs to develop new equipment designed to withstand hacking, jamming, and other rigors of high-tech combat, like advanced anti-aircraft systems that can shoot down scout planes, drones, and helicopters.
Ultimately, the Army envisions multi-purpose systems that can not only detect and analyze enemy signals — the SIGINT function — but also disrupt or subvert those signals — the cyber/electronic warfare functions. That makes a lot of sense, in theory, since cyber/EW needs SIGINT to find its targets in the first place. But it's much more complicated to implement in practice, less because the technology is tricky than because of the intense tribal rivalries within the Army. We'll delve into those divisions and possible solutions in a second article, due out tomorrow.
https://breakingdefense.com/2018/07/busting-the-green-door-army-sigint-refocuses-on-russia-china/
September 29, 2021 | International, Aerospace, C4ISR
The contracts will help launch providers develop transformational capabilities, according to the Space Force.
December 7, 2023 | International, Land
There are several major U.S. defense competitions expected in fiscal 2024, with just these eight estimated to be worth a total of $61.9 billion.
December 21, 2020 | International, Aerospace, Naval, Land, C4ISR
Lockheed Martin has developed a four-round launcher for its new AGM-179A Joint Air-to-Ground Missile, or JAGM, that is designed to be readily installed on warships, including relatively small patrol boats, as well as ground vehicles. This opens up entirely new possibilities for JAGM, which was initially developed primarily as an air-launched anti-tank weapon, in the surface-to-surface role. The JAGM Quad Launcher (JQL) leverages technology from Lockheed Martin's existing Vertical Launch System (VLS) designs, which include the popular Mk 41 VLS found on numerous warships in the U.S. Navy and other navies around the world. It also uses the same Launcher Electronics Assembly (LEA) from the M299 launcher, a four-rail design for helicopters most commonly associated with the AH-64 Apache. All of this combined with an open-architecture Launcher Management Assembly (LMA) designed to help speed up the integration of updated hardware and software as time goes on to improve the JQL's capabilities and add new functionality. The JQL comes in two basic configurations, both of which are seen in the rendering above, one designed for installation on ships below deck like a traditional VLS and another one intended to be fitted on top of the decks of ships or on ground vehicles. "JQL's LEA/LMA launch control system can be integrated with local and remote weapon control systems using wired and wireless interfaces," a product brochure from Lockheed Martin's says. Both designs have what might appear at first glance to be a fifth launch tube, but which is actually an exhaust that diverts the blast of the missiles firing upward, keeping the overall height of the launcher to a minimum. The below deck design features a hatch-type lid to help keep water out of the launcher. The other version simply has covers over each launch tube and the exhaust that break away when the missiles are launched. The exact physical space and power requirements needed for JQL installation are not clear, but Lockheed Martin's promotional literature shows a rendering of two of the launchers on the back of a 4x4 Joint Light Tactical Vehicle (JLTV) truck. Renderings of two other example installations are shown, as well. One of these depicts four JQLs mounted on top of the pilothouse of one of the Navy's new Mk VI patrol boats, while the other is has three of the below deck launchers fitted next to an eight-cell Mk 41 VLS array on the bow of a Multi-Mission Surface Combatant (MMSC), between the forecastle and its main gun. The MMSC is an enlarged derivative of the Freedom class Littoral Combat Ship (LCS) that Lockheed Martin designed for the Navy, the first customer for which is Saudi Arabia. If the JQL is as relatively easy to add to various platforms as it appears from these configurations, it could offer a significant boost in firepower for relatively small ships and vehicles when combined with the capabilities of the JAGM. This missile takes the rear portions of an AGM-114R Hellfire II missile and adds in a new, multi-mode seeker. Most existing Hellfire II missiles use semi-active laser homing to zero in on their targets. This is where an operator in the air, at sea, or on the ground must 'lase' a target with a laser in order for the missile to strike it. There is also the AGM-114L Longbow Hellfire variant that uses a millimeter-wave radar seeker. JAGM's seeker can use both or either method depending on what the crew of the platform firing it feels is best for engaging the target at hand, which may be in motion. The missile can also use both modes at once, finding the target via laser designation and then homing in on it using the millimeter-wave radar, as well. This is especially useful if the laser beam were momentarily obscured by atmospheric conditions or were to otherwise break off during the terminal portion of an attack. Using the MMW seeker, the missile can in most cases still hit its target. Having both options available also gives the weapon an all-weather capability, as clouds, as well as smoke and other obsurants, can make lasing a target impossible. The millimeter-wave radar seeker allows the weapon to be cued to the general target area and use a lock-on-after-launch capability to find it and home in on it. For larger ships, arrays of JQLs could provide an additional layer of close-in defense against swarms of small watercraft or unmanned, explosive-laden suicide boats. The U.S. Navy has been working on integrating the AGM-114L onto some of its LCSs using a vertical launch system for exactly this purpose, an effort that would seem to be somewhat out of date now given the arrival of the more capable JAGM missile. The availability of a JQL variant that can be readily installed above deck means that this kind of protection could be rapidly added to a wide array of naval vessels, including support types that generally have very limited, if any armament, such as fleet oilers and roll-on/roll-off cargo ships. Naval vessels, including smaller patrol boats, such as the Mk VI example in Lockheed Martin's brochure, could also make good use of these missiles against other small watercraft, amphibious landing craft, and other similarly sized threats. The exact range of the JAGM in a surface-launched configuration is unknown, but if it is anywhere near the missile's reported maximum range of around five miles when air-launched, it is possible that naval vessels could engage targets on land close to shore, as well. At the same time, it's interesting to note that the small AGM-176 Griffin missile, which the U.S. Navy's Cyclone class patrol craft are presently armed with, also has a reported range of five miles when launched from the surface, though they pack a smaller warhead then JAGM. In a ground-launched configuration, JQLs could give lighter units on land an important weapon for engaging heavily armored vehicles, strong points, and other better-protected targets. Like Hellfire, JAGM also has a pop-up flight profile, meaning that it could be used against softer targets hiding behind hard cover, such as high walls or rocky outcroppings, as well. This capability could be particularly valuable during operations in dense urban areas, an environment the U.S. military, among others, sees itself increasingly likely to be fighting in as time goes on. If a single JLTV can carry eight JAGMs loaded in two JQLs. That is a lot of instantly on-demand firepower. Having multiple vehicles in this configuration would give troops the ability to rapidly engage a large number of targets at once. This could make it especially attractive to the U.S. Army and U.S. Marine Corps, both of which operate JLTVs and are acquiring JAGMs already for their helicopters and other aerial platforms. If the launcher is capable of being install on this light tactical vehicle, one would imagine that a larger array of JQLs could fit on the back of standard two-and-a-half-ton and five-ton cargo trucks for even more firepower. In both sea and ground-based applications for the JQL, there is a question of targeting. Larger ships would likely have the organic sensors, such as a radar, to spot and track targets at appreciable ranges, as well as potentially designate them with a laser, when it makes sense, to make the most use of the JAGM's dual-mode seeker. However, smaller boats and ground vehicles would likely need to be networked together with other assets to provide critical targeting information, such as drones, helicopters, and fixed-wing aircraft, or deploy an elevated sensor themselves. Otherwise, they would be limited to laser-designating targets one at a time, and all within line of sight. There is also the possibility that Lockheed Martin could develop a variant of the JAGM, or an entirely new missile of similar dimensions, that acts more as a kind of loitering munition, with man-in-the-loop targeting capability, such as that found on the Spike Non-Line-Of-Sight (NLOS) missile from Israel's Rafael. That weapon has the ability to fired at a specific area and then be manually steered onto the target by an operator who is seeing what the missile sees via a feed from an infrared camera in its nose. These weapons can be used to reconnoiter their targets before striking them, as well. Azerbaijan used Spike NLOS in this way to great effect during its recent conflict with Armenia, as seen in the video below. It is worth noting that Lockheed Martin did also demonstrate an imaging infrared seeker capability for JAGM during testing, though the initial AGM-179A variant does not feature that capability. There have also been plans in the past for follow-on versions of the missile with a tri-mode seeker, as well as extended range and other improved capabilities. It's also interesting to point out that the U.S. Army had actually previously planned to acquire a somewhat similar capability, in the form of the XM501 Non-Line-of-Sight Launch System (NLOS-LS), as part of the abortive Future Combat Systems (FCS) program, which was canceled in 2009. In tests, the XM501, which was made up of Container Launch Units (CLU), each designed to hold 15 small missiles, together with a fire control system, was installed on a 6x6 Family of Medium Tactical Vehicles (FMTV) cargo truck. There were also plans to add the XM501 to the Navy's LCSs, which has now been superseded by the aforementioned AGM-114L launch system. It is important to note that the missiles intended to go into the NLOS-LS had much greater range than Hellfire or JAGM and included a type capable of operating as a loitering munition similar to Spike-NLOS. The JQL concept is also similar in some ways to work that European missile consortium MBDA is doing to develop a variety of ground, as well as sea-based, launcher options for its Brimstone missile. Brimstone looks very much like Hellfire and JAGM, visually, and also has a dual-mode laser and millimeter-wave radar seeker. All told the JQL seems to make incredible sense as a way to quickly add the JAGM missile to a wide array of new launch platforms at sea and on the ground. As the battlespace becomes increasingly networked, deploying these systems would give even diminutive vehicles brutally destructive capabilities with minimal modifications. Add a loitering munition option, and these mini-VLS modules could really increase lethality of even the lightest mechanized units on the modern battlefield. https://www.thedrive.com/the-war-zone/38259/this-mini-vertical-launch-system-can-give-small-ships-and-trucks-huge-firepower