Back to news

April 6, 2020 | International, Aerospace

Boeing to get $882M in withheld KC-46 funds back for COVID-19

By: Valerie Insinna

WASHINGTON — The U.S. Air Force will release $882 million to Boeing that it had retained due to ongoing technical problems involving the KC-46 tanker, the service announced Thursday. The move is meant to help the company make ends meet during the novel coronavirus pandemic.

“This agreement provides Boeing $882M of withheld payments for previous non-compliance in 33 KC-46 deliveries,” the service said in a statement. “This withhold release is in line with Department of the Air Force and Department of Defense policies to maximize cash flow, where prudent, to combat coronavirus impacts on the industry base."

When the U.S. Air Force agreed to take delivery of the first KC-46 tanker in January 2019, it made clear to Boeing that it still maintained a significant piece of financial leverage. The service could withhold a maximum of $28 million every time a new KC-46 was delivered — about 20 percent of the total sum due to Boeing.

Air Force officials said they would hold back those funds until they saw measurable progress in fixing technical deficiencies, particularly the tanker's troubled Remote Vision System. By January, when Boeing had delivered 30 planes, the service had withheld about $800 million, according to Defense One.

The Air Force and Boeing on Thursday announced a final agreement to fix the RVS, the imaging system used by boom operators to see the position of the receiver aircraft and the movements of the boom itself. According to the deal, Boeing will pay for both incremental fixes to current RVS software and hardware, as well as a complete redesign of the system with new cameras, processors and computers.

Speaking with reporters about the decision on Thursday, Air Force acquisition executive Will Roper stressed that the service will be able to re-enact the cost penalties if Boeing's performance begins to slip. However, the service wanted to ensure that Boeing has the funding it needs to begin the RVS redesign, which it is calling RVS 2.0.

“Have we given up our leverage? No, I think we've used it well," he said. “Part of what we committed to Boeing is to do an expedited review over the next 120 days for the 159 outstanding noncompliances. Boeing asserts that they have addressed those noncompliances, and we are going to review those quickly. We will not instate withholds over the 120 period, but if we put that some of the corrections that have been put in place don't make our requirement, then we will start withholds again.”

As the largest maker of commercial planes in the United States, Boeing has been hit particularly hard by the COVID-19 pandemic, which has spurred travel restrictions and called into question commercial airlines' ability to pay for Boeing aircraft already on order.

Meanwhile, Boeing announced last week that it would shutter operations for two weeks at its facilities in the Seattle, Washington, area due to the high number of COVID-19 cases in the state. Those production operations include the manufacturing of the KC-46 at Everett and the P-8 submarine-hunting plane in Renton.

The Air Force intends to buy 179 tankers over the KC-46 program of record.

https://www.defensenews.com/air/2020/04/02/boeing-to-get-882m-in-withheld-kc-46-funds-back-for-covid-19

On the same subject

  • Key Upgrades Mark 2021 As Turnaround Year For KC-46A

    January 19, 2021 | International, Aerospace

    Key Upgrades Mark 2021 As Turnaround Year For KC-46A

    Guy Norris As progress accelerates on a key visual system redesign, a wing refueling pod certification and the hopes for more international sales, Boeing believes its troubled KC-46A tanker program has finally turned a corner. Marking a shift away from more than three years of delays, challenges and frustration for the U.S. Air Force, the program's brighter outlook builds on two agreements announced between Boeing and the service last April. The first covered the redesign and retrofit of a fully compliant boom operator remote vision system (RVS), at no cost to the government, while the second released $882 million of withheld payments to Boeing for previous noncompliance in 33 KC-46A deliveries. “That was a real turning point, and it's been extremely collaborative since then,” says Boeing KC-46A Vice President and General Manager Jamie Burgess. “That's really been cultivated by the agreement that we reached on the new RVS system,” he says, acknowledging the change to the relationship with the Air Force. “For a while, we were at a bit of an impasse in terms of what needed to be done to address the Air Force's concerns. There's a lot of hard work left to go, but it's been a really long relationship now,” he adds. Boeing is working on a two-phase approach to correct the well-documented RVS deficiencies that were revealed during flight tests. These defects mostly center on the oversensitivity of the aft-looking camera system to direct sunlight, which led to image issues in the hybrid 2D-3D video feed to the boom operator. “The first phase is really just intended to address that distortion piece of it, and that's primarily a software change that's being implemented now,” Burgess says. The fix, dubbed the enhanced RVS, “digitally addresses the distortion around the edges of the picture,” he adds. The fix will also make viewing the system “more comfortable for the operator when looking through the 3D glasses,” says Sean Martin, KC-46A global sales and marketing leader, referring to the stereoscopic eyewear required for the system. “It makes the image more like what they are used to seeing in real life.” The second phase, and the subject of the Air Force agreement, is RVS 2.0. Described by Burgess as “a full technological refresh of the system,” the revised package will include new cameras, new displays, a light-detection and ranging (lidar) system and all new supporting computing infrastructure. The redesigned aerial-refueling operator station will feature much larger 40-in. displays compared with the current 24-in. screens, giving the position “much more of a kind of home theater feel to it,” Burgess says. The image will remain in 3D but will be presented in color and 4K resolution. The Air Force has also opted for a collimated mirror projection method over an LCD option, “so we are working with them to mature that design,” the manufacturer adds. In collaboration with the Air Force, Boeing completed the RVS 2.0 system readiness review in December and remains on track to hold the preliminary design review in the second quarter. The system is due to be fielded around late 2023 or early 2024. The redesign will also be provisioned for semi-autonomous or autonomous aerial refueling (AAR), satisfying a long-term capability vision of both the Air Force and Boeing. “The computing-system upgrade will be able to handle the processing for future automation,” Burgess says. “In parallel, we're working toward developing all of the computing algorithms that will be required to track the receiver [aircraft] using machine-learning-type software. We will feed that into our boom control laws, so that it can go find the receptacle on that receiver,” he adds, referring to the KC-46A's fly-by-wire controlled boom. The algorithm development work builds on the company's long-running collaboration with the Air Force Research Laboratory on autonomous refueling as well as other related efforts, such as the unmanned MQ-25 tanker for the U.S. Navy. “We have a lab now where we're developing those algorithms that we can move into KC-46 when the Air Force has a requirement for it,” Martin says. “We want to bring the capability to them, but we haven't received a requirement from them that says they need that. But we're working on it, and we're committed to it.” Boeing says the end is also in sight for another issue that has overshadowed the tanker development: the long-delayed certification of the Cobham-developed wing air-refueling pods (WARP). The wing-mounted pods, along with a centerline station, form part of the tanker's hose-and-drogue system, which can deliver up to 400 gal. of fuel per minute, compared with 1,200 gal. per minute for the boom. All KC-46As are provisioned at delivery to carry the pods, but in line with Boeing's initial decision to pursue both military and civil certification for the tanker and its systems, the aircraft cannot be operationally equipped with the system until the FAA approves the WARPs. The pods performed well during flight testing, but “the FAA has required a tremendous amount of testing in order to certify them,” Burgess says. “Similar pods have flown for years on other military aircraft, but they have never been FAA-certified.” Although Cobham seriously underestimated how much work would be required for FAA certification, Burgess says: “We're at the very end of that testing and are just about done.” FAA approval is expected for the pod by the end of the first quarter. Previously, all certification work related to pods was concerned with ensuring that carriage of such systems was safe and would not affect the control and safe landing of the aircraft. “Now we had to look at certifying it to operate, so all the components—such as the ram air turbine on the front of the pod—had to be cleared for safe use,” Martin adds. “That's been the challenge for them, and they've done a great job stepping up to it.” Another ongoing area of modification is revising a valve for the boom actuation system to correct a refueling issue specific to the Fairchild Republic A-10 attack aircraft. “The boom flies down and telescopes out to connect with the receiver aircraft, which pushes the boom up into a nominal refueling position,” Burgess says. At altitude, the A-10 with wing stores was only able to generate a force of about 650-lb. thrust resistance compared with the international standard of 1,400 lb. to which the boom was designed. “We're changing the actuation system to make it just require less force to push it up,” Burgess says. “That's currently going through the critical design review with the Air Force.” He adds that the first qualification units are now being assembled. “We're also building up for a big full-scale lab test, and so that's well underway.” Boeing is also preparing to design, develop and test a secure communications system, dubbed the Pegasus Combat Capability Block 1 upgrade, and expects to receive a contract for the enhancement package this year. The Air Force is studying which elements to include in the upgrade, and that puts the KC-46A on a path to play a potentially wider role as a battlespace communications node. But Boeing adds that a wing-mounted, podded, radio-frequency countermeasures system is not currently in the Block 1 suite. With 42 tankers delivered by the end of 2020 and the firm orderbook bolstered by a $1.6 billion contract for the sixth production lot covering an additional 12 aircraft, Boeing is focused on maintaining a smooth assembly flow despite the disruption from the COVID-19 pandemic. The process includes rigorous new quality controls introduced after a series of discoveries of foreign object contamination caused the Air Force to temporarily suspend accepting the aircraft in April 2019. “It's no secret that we realized that we had an issue as far as foreign object debris [FOD] on airplanes,” Burgess says. “We stopped the production line, and we stopped deliveries for a while and put in place a number of controls. There's a whole lot of work that goes on in the factory around what we call ‘clean as you go.' At the end of the shift, there is a cleanup to make sure that the airplanes that roll out of the factory are perfectly clean.” The decontamination focus continues when airframes are rolled from the factory into the nearby Everett Modification Center, where all the military equipment is installed. “We do a complete FOD sweep of the airplane when it enters and again when it leaves to go to the delivery center,” Burgess says. “The aircraft delivering today are very clean. It's been a big cultural shift for the program.” Production is currently split roughly evenly between commercial 767-300F freighters and KC-46A variants—a divide that sustains the line at about three airframes per month. With the latest order, confirmed on Jan. 12, Boeing is now on contract for 79 tankers out of an intended total of 179. The firm orderbook is expected to grow again to 94 when the Air Force awards the next contract for a further 15 aircraft under production Lot 7, which legislators approved in December. Although program delays held up initial deliveries to the Air Force until January 2019, Burgess says the subsequent flow of operational aircraft to four bases marks an unprecedented pace for any recent modern weapons system. “I'm not aware of any other major military program that's done this,” he adds. “We delivered 28 in 2019. We'll do 14 this year.” Boeing maintains the flexibility to introduce slots into the production skyline for international sales, the first of which is to Japan. The aircraft, the first of four that the Japan Self-Defense Force has ordered, is due to make its first flight sometime this quarter. The U.S. Congress has also approved the sale of eight aircraft to Israel, and Boeing is pursuing other prospects in Southwest Asia and the Middle East, particularly in Qatar. https://aviationweek.com/defense-space/aircraft-propulsion/key-upgrades-mark-2021-turnaround-year-kc-46a

  • US Army awards air-launched effects contracts for future helicopters

    August 25, 2020 | International, Aerospace

    US Army awards air-launched effects contracts for future helicopters

    By: Jen Judson WASHINGTON — The U.S. Army has awarded 10 contracts worth a total of $29.75 million to companies to provide mature technologies in the realm of air-launched effects, or ALE, for future vertical lift aircraft that are expected to come online around 2030, service aviation officials have told Defense News. Raytheon, Alliant Techsystems Operations of Northridge, California, and Area-I of Marietta, Georgia, were awarded contracts to develop air vehicles. L3 Technologies, Rockwell Collins and Aurora Flight Services Corporation were awarded contracts to provide mission systems. And Raytheon, Leonardo Electronics US Inc., Technology Service Corporation of Huntsville, Alabama, and Alliant Techsystems Operations LLC of Northridge, California, received contracts to provide ALE payloads. Through ALE, the Army hopes to provide current and future vertical lift fleets with “the eyes and ears” to penetrate enemy territory while manned aircraft are able to maintain standoff out of range of enemy attack, Brig. Gen. Wally Rugen, who is in charge of the Army's FVL modernization efforts, said in an exclusive interview with Defense News. “To do that, that has a whole host of capabilities embedded in it, and I would say it's not just the eyes and ears, but it's also, what we are finding, is the mouth, so our ability to communicate by bringing mesh network capabilities, by bringing an ability to hear in the electronic spectrum, and, again, the ability to collect in that spectrum so we can find, fix and finish on pacing threats,” he added. The Army plans to take these already technically mature capabilities through additional technology maturation, Col. Scott Anderson, the unmanned aircraft systems project manager for the Army's Program Executive Office for Aviation, said in the same interview. “We're looking for high technology readiness levels, so best of breed,” he said, “that we can buy and then we don't have to develop, spend a lot of developmental dollars getting ready to get out the door in a prototype.” The air vehicle, payloads and missions systems will all fit into a government-owned architecture by fiscal 2024. The service will first look at each major component of ALE individually, rather than as a whole system, to assess readiness, Anderson said. That will run through most of 2021. Then in 2022, the Army will take those capabilities and bring them together into a full system prototype working with Georgia Tech, which is helping the service write the underpinnings of the reference architecture, he added. In the final phase, the Army will integrate the system onto a platform, first targeting the Gray Eagle and AH-64 Apache attack helicopter. Ultimately the ALE capabilities to come out of the effort will be targeted for the Future Attack Reconnaissance Aircraft (FARA) ecosystem, Anderson said. The Army is planning to field both FARA and a Future Long-Range Attack Aircraft (FLRAA) in the early 2030s. “We want to mature the [ALE] ecosystem and then have it ready to hand off to FARA in full bloom,” Rugen added. The Army has been looking at ALE since roughly late 2017, Rugen said, and has been working to refine the associated capabilities development documents for several years. Army Futures Command Commander Gen. Mike Murray signed an abbreviated capabilities development document in May. The service has been pleased with what it has seen so far in live prototype experimentation and physics-based modeling within the science and technology community and is prepared to move quickly on the effort, Rugen said. The Army selected Area-I's ALTIUS, the Air-Launched, Tube-Integrated Unmanned System, to launch from a rotary-wing test aircraft — a UH-60 Black Hawk — and was able to demonstrate the concept from a high altitude in August 2018. Then the service demonstrated the concept again during a ground robotic breach exercise at Yakima Air Base in Washington state in 2019 as well as a launch from a Black Hawk flying at a lower altitude — roughly 100 feet or less. In March, at Yuma Proving Ground, Arizona, the Army demonstrated multiple ALEs launched from a Black Hawk at very low altitudes to “maintain masking,” Rugen said. “We got our mesh network extended out to about 60 kilometers, so we were pretty happy with, again, the requirements pace and the experimentation pace with that.” The program will evolve beyond 2024 as the capability will align more closely with fitting into future formations. The Army could award future contracts to integrate the capability or could establish follow-on Other Transaction Authority contracts — which is the type of contract mechanism used for the 10 awardees that allows the Army to move faster to rapidly prototype. “We have the contractual mechanisms” to be “flexible and responsive,” which is key in a program like ALE, Joe Giunta, executive director of Army Contracting Command at Redstone Arsenal, Alabama, said. Instead of looking for a vendor that could deliver every aspect of a system, “we can harvest from across multiple different vendors, who bring, if you will, the best characteristics,” Patrick Mason, the deputy PEO for Army Aviation, added. “Then as they merge into our government reference architecture and our open system approach, we are then able to bring those together to create a much more capable product,” he said, that “fits into the longer term on how we can modify that as technology comes along and we can ramp on increases in technologies as we get out into the '23, '24 time frame and then further into the future as we look out to FY30 and the fielding of FARA, FLRAA and the full establishment of the FVL ecosystem.” The Army released a notice to industry Aug. 12 looking for input on technology that could further advance the capability of ALE against sophisticated adversaries with plans to host an industry day in September. While the service will prototype mature technologies in the near term, Mason said, “when you look at the '25 and '26 time frame, there will be better technologies that are developed around the payload side of the house, advancements in air vehicles or advancements in the missions systems.” The RFI is “looking at the next increment that is out there as we move from now in 2020 to what we would have as a residual capability in '24 to what we could move to in 2030,” Mason said. https://www.defensenews.com/land/2020/08/24/army-awards-air-launched-effects-contracts-for-future-helicopters/

  • Bringing Photonic Signaling to Digital Microelectronics

    November 7, 2018 | International, C4ISR

    Bringing Photonic Signaling to Digital Microelectronics

    DARPA program seeks to unleash the performance of modern multi-chip modules by integrating optical signaling at the chip-level OUTREACH@DARPA.MIL 11/1/2018 Parallelism – or the act of several processors simultaneously executing on an application or computation – has been increasingly embraced by the microelectronics industry as a way of sustaining demand for increased system performance. Today, parallel computing architectures have become pervasive across all application domains and system scales – from multicore processing units in consumer devices to high-performance computing in DoD systems. However, the performance gains from parallelism are increasingly constrained not by the computational limits of individual nodes, but rather by the movement of data between them. When residing on modern multi-chip modules (MCMs), these nodes rely on electrical links for short-reach connectivity, but once systems scale to the circuit board level and beyond, the performance of electrical links rapidly degrades, requiring large amounts of energy to move data between integrated circuits. Expanding the use of optical rather than electrical components for data transfer could help significantly reduce energy consumption while increasing data capacity, enabling the advancement of massive parallelism. “Today, microelectronic systems are severely constrained by the high cost of data movement, whether measured in terms of energy, footprint, or latency,” said Dr. Gordon Keeler, program manager in DARPA's Microsystems Technology Office (MTO). “Efficient photonic signaling offers a path to disruptive system scalability because it eliminates the need to keep data local, and it promises to impact data-intensive applications, including machine learning, large scale emulation, and advanced sensors.” Photonic transceiver modules already enable optical signaling over long distances with high bandwidth and minimal loss using optical fiber. Bottlenecks result, however, when data moves between optical transceivers and advanced integrated circuits in the electrical domain, which significantly limits performance. Integrating photonic solutions into the microelectronics package would remove this limitation and enable new levels of parallel computing. A new DARPA program, the Photonics in the Package for Extreme Scalability (PIPES) program, seeks to enable future system scalability by developing high-bandwidth optical signaling technologies for digital microelectronics. Working across three technical areas, PIPES aims to develop and embed integrated optical transceiver capabilities into cutting-edge MCMs and create advanced optical packaging and switching technologies to address the data movement demands of highly parallel systems. The efficient, high-bandwidth, package-level photonic signaling developed through PIPES will be important to a number of emerging applications for both the commercial and defense sectors. The first technical area of the PIPES program is focused on the development of high-performance optical input/output (I/O) technologies packaged with advanced integrated circuits (ICs), including field programmable gate arrays (FPGAs), graphics processing units (GPUs), and application-specific integrated circuits (ASICs). Beyond technology development, the program seeks to facilitate a domestic ecosystem to support wider deployment of resulting technologies and broaden their impact. Projections of historic scaling trends predict the need for enormous improvements in bandwidth density and energy consumption to accommodate future microelectronics I/O. To help address this challenge, the second technical area will investigate novel component technologies and advanced link concepts for disruptive approaches to highly scalable, in-package optical I/O for unprecedented throughput. The successful development of package-level photonic I/O from PIPES' first two technical areas will create new challenges for systems architects. The development of massively interconnected networks with distributed parallelism will create hundreds to thousands of nodes that will be exceedingly difficult to manage. To help address this complexity, the third technical area of the PIPES program will focus on the creation of low-loss optical packaging approaches to enable high channel density and port counts, as well as reconfigurable, low-power optical switching technologies. A full description of the program is available in the Broad Agency Announcement. For more information, please visit: https://www.fbo.gov/spg/ODA/DARPA/CMO/HR001119S0004/listing.html https://www.darpa.mil/news-events/2018-11-01

All news