Back to news

September 25, 2019 | International, C4ISR

Boeing Australia collaborates on AI research for unmanned systems

BRISBANE, Australia, Sept. 25, 2019 — Boeing [NYSE:BA] is partnering with Australia's Trusted Autonomous Systems Defence Cooperative Research Centre (DCRC) to develop advanced artificial intelligence (AI) technologies to create smarter unmanned systems for global forces. Embedding machine learning techniques on-board will help unmanned systems better understand and react to threat environments.

“Over the next 12 months, Boeing Australia will design and test cognitive AI algorithms to enable sensing under anti-access conditions and to navigate and conduct enhanced tactics in denied environments,” said Dr. Shane Arnott, director of Phantom Works International.

Boeing Australia's first innovation project with the DCRC will examine an unmanned system's route planning, location, and identification of objects and the platform's subsequent behavioural response.

The DCRC for Trusted Autonomous Systems was announced by the Australian Government in 2017 to support the rapid creation and transition of industry-led trustworthy smart-machine technologies through the innovation ecosystem to the Australian Defence Force.

“Together with Boeing, we are investing in advanced technology that can have real game-changing product outcomes for our military to match the evolving threats and achieve a sustainable autonomous industry for Australia,” said Professor Jason Scholz, chief executive officer of the DCRC for Trusted Autonomous Systems.

Boeing will work with Australian university partners and Brisbane-based supplier RF Designs to flight-test and evaluate the capability with autonomous high performance jets.

* The Trusted Autonomous Systems DCRC receives funding support from the Australian Government's Next Generation Technologies Fund and the Queensland Government's Advance Queensland initiative.

# # #

Contact:

Melanie de Git
Boeing Australia
Mobile: +61 423 829 505
melanie.degit@boeing.com

Trusted Autonomous Systems DCRC
Phone: +61 7 3371 0524
info@tasdcrc.com.au

View source version on Boeing : https://boeing.mediaroom.com/2019-09-24-Boeing-Australia-collaborates-on-AI-research-for-unmanned-systems#assets_20295_130508-117

On the same subject

  • Raytheon awarded $25.4M for Tomahawk Weapons Systems Military Code, AGR5 kit

    September 20, 2019 | International, Aerospace

    Raytheon awarded $25.4M for Tomahawk Weapons Systems Military Code, AGR5 kit

    BySommer Brokaw Sept. 19 (UPI) -- Raytheon Missile Systems has been awarded a $25.4 million contract by the Navy for the Tomahawk Weapons System Military Code review and AGR5 kit. The contract, announced Wednesday by the Department of Defense, is for the company to conduct critical design review of the Tomahawk Weapons System Military Code's software and hardware. The contract also covers development work on an AGR5 kit, an anti-jam tool to be used for the global positioning system. The design review will include "studies, analysis, design, development, integration and test of hardware and software solutions," the Pentagon said in a press release. The contract also includes Navy funds for "assembly, integration, test and documentation of an AGR5 kit," the notice said. Raytheon will perform more than half the work in El Segundo, Calif., and the rest in Tucson, Ariz., with work expected to be completed by March 2021. https://www.upi.com/Defense-News/2019/09/19/Raytheon-awarded-254M-for-Tomahawk-Weapons-Systems-Military-Code-AGR5-kit/1891568909920/

  • Hypersonic weapon startup Castelion has first prototype missile test
  • DARPA Announces Microsystems Exploration Program

    July 22, 2019 | International, C4ISR

    DARPA Announces Microsystems Exploration Program

    Over the past few decades, DARPA's Microsystems Technology Office (MTO) has enabled revolutionary advances in electronics materials, devices, and systems, which have provided the United States with unique defense and economic advantages. To continue its path of successful electronics innovation, DARPA today announced a new MTO effort called the Microsystems Exploration program. The Microsystems Exploration program will constitute a series of short-term investments into high-risk, high-reward research focused on technical domains relevant to MTO. Leveraging streamlined contracting and funding approaches, awards for each area of exploration – or μE topic – will be made within 90 days of announcement. Each μE topic will run for up to 18 months, during which time researchers will work to establish the feasibility of new concepts or technologies. “This strategy of making smaller, targeted research investments will allow us to capitalize quickly on new opportunities and innovative research concepts,” said Dr. Mark Rosker, director of MTO. “The Microsystems Exploration program provides a way to assess whether or not a concept could evolve into a full program without requiring the use of more significant resources.” The Microsystems Exploration program will employ best practices from DARPA's other fast-track solicitation programs – the agency-wide AI Exploration program and the Defense Science Office's “Disruptioneering” initiative. These programs are focused on enabling rapid advances in artificial intelligence and basic science respectively, and have shown numerous benefits to this approach. Similar to these efforts, the simplified proposal, contracting, and funding process employed by each μE topic will make it even easier for individuals and organizations to contribute to DARPA's mission. Each award may be worth up to $1 million, as described in the individual μE solicitations. To help advance MTO's strategic imperatives, the Microsystems Exploration program will pursue innovative research concepts that explore frontiers in embedded microsystem intelligence and localized processing; novel electromagnetic components and technologies; microsystem integration for functional density and security; and disruptive microsystem applications in C4ISR, electronic warfare, and directed energy. In alignment with these technical domains, the first three potential topics focus on hardware security, novel materials, and new computing architectures for heterogeneous systems. The first potential topic aims to address security issues within the hardware supply chain. Defense systems increasingly rely on commercial of the shelf (COTS) devices that move through complex supply chains, with each component changing hands several times. Throughout the process, nefarious actors have numerous opportunities to compromise the technology by introducing malicious circuitry – or hardware Trojans – to printed circuit boards (PCBs). The ability to detect when components are tampered with is difficult as the attacks are designed to remain hidden and avoid post-manufacturing tests until its functionality is triggered. The “Board-Level Hardware Security” related topic could explore the technological feasibility for real-time detection against these hardware Trojans installed in complex COTS circuit boards. New uses of scandium (Sc)-doped aluminium nitride (AIN) could be investigated as a future potential μE topic. Sc-doped AlN is a popular material for a number of device applications, which span RF filters, ultrasonic sensors, and oscillators. Recent work has demonstrated the emergence of the material's use in ferroelectric switching, which has enormous potential across a number of applications and devices. However, current exploration of this capability has been limited to a research setting. The “Ferroelectric Nitride Materials and Non-Volatile Memory” related topic could expand on this research, identifying the thickness and doping ranges that exhibit ferroelectric behavior, the robustness and reproducibility of the ferroelectric response, and further demonstrating ferroelectric nitrides as a technologically useful material. Another potential μE topic could seek to address the trade-off between programmer productivity and performance that happens as hardware complexity continues to skyrocket. Advances at the hardware and software level that have enabled continued progress in computing performance, cost, and ubiquity have hit a wall. The expectation is that subsequent performance gains will come from an increased level of parallelism, specialization, and system heterogeneity, which will place further strain on programmer productivity. This “Massively Parallel Heterogeneous Computing” related topic could explore the creation of compiler technology that improves programmer productivity of massively parallel and heterogeneous processing systems. Additional information about the Microsystems Exploration program can be found under Program Announcement DARPA-PA-19-04. Further details on the three potential μE topics can be found under Special Notice DARPA-SN-19-69. The Microsystems Exploration Research Area Announcement Special Notice has been issued solely for information and potential new program planning purposes. All future and official solicitation notices for μE topics will be published to Federal Business Opportunities (FBO) at www.fbo.gov. https://www.darpa.mil/news-events/2019-07-16

All news