Back to news

October 1, 2019 | International, Aerospace

Air Force paints a digital future where data from satellites play central role

by

In a few months the Air Force will start a series of experiments to try to connect fighter aircraft and other weapon systems into a single network so they can all share critical data and intelligence, much of which is collected by satellites in space. Will Roper, the assistant secretary of the Air Force for acquisition, described the venture as the “first demonstration of what you could call ‘step 1' of ABMS.”

ABMS is short for Advanced Battle Management System, and it is a hard concept to explain because it is not like a traditional piece of hardware or software. It can be best described as a network where data is piped in from sensors located in space, at sea, in the air or on the ground. That information would be instantly analyzed with artificial intelligence tools and shared across the network. This is the type of technology that will “allow us to be more collaborative,” Roper told reporters at the recent 2019 Air Space & Cyber symposium.

Chief of Staff Gen. David Goldfein is “driving this idea across the Air Force,” said Roper. Goldfein has been a champion of ABMS and wants to make it a “large dollar item in our 2021 budget,” said Roper. The thinking is that the Air Force will spend less money on shiny new platforms and more on exploiting data and advanced networks. It would be like the “Internet of Things, but applied to military systems,” said Roper.

Air Force leaders initially pitched the ABMS idea to Congress two years ago as a vision of the future where access to timely data is key to success in the battlefield. They suggested that the Air Force should invest in ABMS rather than spend billions on new command-and-control airplanes. Congress gave the plan a skeptical reception but the Air Force will continue to press its case.

In a keynote speech at Air Force Association's Air Space & Cyber conference last week, Goldfein described the future as one of “multi-domain operations” where all weapons and military forces receive up-to-the-minute intelligence and are able to share that data, something that ABMS would make possible.

“What I'm talking about is a fully networked force where Air Force paints a digital future where data from satellites play central role each platform's sensors and operators are connected,” said Goldfein.

While the concept seems straightforward, putting it into practice is not. One of the challenges is how to handle the vast amounts of data available from satellites and the infrastructure required to bring this data to the ground, analyze the data and then transport it to where it's needed.

Some of the crucial technologies that will enable ABMS or any similar efforts will come from the world of commercial space and cloud computing. The Air Force Space and Missile Systems Center has recognized this as it pursues a project called CASINO, short for Commercially Augmented Space Inter Networked Operations.

CASINO is a spinoff of the Defense Advanced Research Projects Agency's Blackjack program that is attempting to demonstrate the military utility of small satellites in low Earth orbit. SMC has made CASINO one of its signature efforts to show how commercial technology could be used to process and distribute data from large LEO constellations.

The Pentagon's Silicon Valley-based Defense Innovation Unit on Sept. 10 awarded a contract of undisclosed value to Ball Aerospace and Microsoft to demonstrate cloud processing capabilities in support of the CASINO project. The companies will have to show how simultaneous, worldwide data streams from large, distributed constellations of small satellites can be processed quickly using Microsoft's Azure cloud and Ball Aerospace algorithms.

This is about making satellite data more actionable more quickly, Azure Global vice president Tom Keane said. One of the questions this project seeks to answer is “what would it take to completely transform what a ground station looks like, and downlink that data directly to the cloud?” Keane said.

Perhaps one option is to place electronically steered flat panel antennas on the roof of a data center to connect multiple LEO satellites. Ball Aerospace algorithms in this project will process data streams from up to 20 satellites. With the data in the cloud, customers can direct it to where it's needed. Clearly, there is a long way to go to achieve what Goldfein calls the “Air Force That We Need” — one where all U.S. and allied forces are connected and get relevant information quickly. But you have to start somewhere.

https://spacenews.com/air-force-paints-a-digital-future-where-data-from-satellites-play-central-role/

On the same subject

  • Japan Coast Guard orders two more H225 helicopters

    April 8, 2020 | International, Aerospace, Naval

    Japan Coast Guard orders two more H225 helicopters

    Tokyo, April 6, 2020 – Japan's largest Super Puma operator, Japan Coast Guard (JCG), has placed a new order of two H225 helicopters. This follow-on order brings JCG's Super Puma fleet to 15, comprising two AS332s and 13 H225s. The new helicopters will be utilised for territorial coastal activities, security enforcement, as well as disaster relief missions in Japan. “We thank the Japan Coast Guard for its continued confidence in the H225,” said Guillaume Leprince, Managing Director of Airbus Helicopters in Japan. “The H225 is well regarded as a reference in search-and-rescue operations and security enforcement, and we are certainly happy to see these helicopters effectively deployed in Japan through the years. We have delivered three new H225 to JCG in the recent months, within schedule, and are committed to fully supporting its existing fleet, as well as its upcoming deliveries, ensuring high availability for its operations.” The JCG's H225s are covered by Airbus' HCare Smart full-by-the-hour material support. This customised fleet availability programme allows JCG to focus on its flight operations whilst Airbus manages its assets. The 11-ton-category, twin-engine H225 is the latest member of Airbus Helicopters' Super Puma family. Equipped with state-of-the-art electronic instruments and renowned autopilot precision, the all-weather capable H225 offers outstanding endurance and fast cruise speed, and can be fitted with various equipment to suit any role. In Japan alone, a total of 28 helicopters from the Super Puma family are currently flown by civil, parapublic operators, and Japan's Ministry of Defense for various search and rescue missions, offshore operations, VIP, fire-fighting, and passenger and goods transportation. Your Contact Belinda Ng Head of External Communications, Asia-Pacific (Helicopters and Defence & Space) +65 9683 6361 View source version on Airbus: https://www.airbus.com/newsroom/press-releases/en/2020/04/japan-coast-guard-orders-two-more-h225-helicopters.html

  • US military services exchanging cloud-computing wisdom amid JADC2 push

    January 17, 2023 | International, C4ISR

    US military services exchanging cloud-computing wisdom amid JADC2 push

    The Army is expected to spend some $290 million on cloud uptake in the coming months, amid a push service officials dubbed the “year of action.”

  • Raytheon to equip classic Hornet with upgraded radar

    January 16, 2019 | International, Aerospace, C4ISR

    Raytheon to equip classic Hornet with upgraded radar

    Jan. 15 (UPI) -- Raytheon will equip the U.S. Marine Corps' classic Hornet fleet with an upgraded APG-79(v)4 AESA radar system. Raython plans to begin delivering the system in 2021 and finish deliveries by 2022 for the Hornet fleet. No specified contract amount was listed in a news release Tuesday announcing the selection by the Marines. Full article: https://www.upi.com/Defense-News/2019/01/15/Raytheon-to-equip-classic-Hornet-with-upgraded-radar/7711547564777/

All news