Back to news

February 25, 2019 | International, Other Defence

A New Layer of Medical Preparedness to Combat Emerging Infectious Disease

DARPA has selected five teams of researchers to support PREventing EMerging Pathogenic Threats (PREEMPT), a 3.5-year program first announced in January 2018 to reinforce traditional medical preparedness by containing viral infectious diseases in animal reservoirs and insect vectors before they can threaten humans. Through studies in secure laboratories and simulated natural environments, the PREEMPT researchers will model how viruses might evolve within animal populations, and assess the safety and efficacy of potential interventions. Autonomous Therapeutics, Inc., Institut Pasteur, Montana State University, The Pirbright Institute, and the University of California, Davis, lead the PREEMPT teams.

“DARPA challenges the PREEMPT research community to look far left on the emerging threat timeline and identify opportunities to contain viruses before they ever endanger humans,” said Dr. Brad Ringeisen, the DARPA program manager for PREEMPT. “One of the chief limitations of how infectious disease modeling is currently conducted is that it forecasts the trajectory of an outbreak only after it is underway in people. The best that data can do is inform a public health response, which places the United States in a reactive mode. We require proactive options to keep our troops and the homeland safe from emerging infectious disease threats.”

According to the World Health Organization (WHO), approximately 60 percent of emerging infectious diseases reported globally are zoonoses, meaning that they were initially diseases of animals and at some point became capable of infecting people. Zoonotic diseases are responsible for millions of human deaths every year, and the scope of the challenge is increasing due to the densification of livestock production, human encroachment into natural spaces, and upward trends in globalization, temperature, and population.

Ebola is a high-profile example of a zoonotic disease. Despite being relatively difficult to spread — requiring direct contact with fluids from infected organisms — a string of outbreaks over the past five years has highlighted the threat it could present once established in densely populated areas. Researchers express even greater concern over the pandemic potential of new strains of the influenza virus and other airborne pathogens. Even in the United States and its territories, where viruses do not frequently emerge directly from animal reservoirs, vector-borne transmission of zoonoses such as West Nile virus disease is on the rise.

The 2018 U.S. National Biodefense Strategy directs that it is essential to detect and contain such bio-threats, adopting a proactive posture to improve preparedness while also assessing and managing any biosecurity risks related to possible interventions. “The health of the American people depends on our ability to stem infectious disease outbreaks at their source, wherever and however they occur,” the document states. For the Department of Defense, that obligation extends to protection of deployed service members, who often operate in countries that are “hot spots” for emerging viruses yet lack robust public health infrastructure.

The teams DARPA selected for PREEMPT comprise multidisciplinary researchers who bring expertise and field experience from around the world, some of whom represent institutions from nations at high risk from emerging infectious disease. Institutions participating as sub-contractors to DARPA receive funding from the lead organizations except as otherwise noted.

The PREEMPT teams proposed to model specific diseases to assess the risk of spillover from animals into humans, identify key bottlenecks in the process as opportunities for intervention, and develop and assess novel, animal- or insect-focused interventions with built-in safety switches to prevent cross-species jump. The teams will collect samples from animal reservoirs in the field for analysis in secure, bio-contained facilities; some teams will also conduct analysis on existing banked samples and datasets. DARPA is not funding the release of PREEMPT interventions into the environment.

  • Autonomous Therapeutics, Inc., under principal investigator Dr. Ariel Weinberger, leads a team made up of CSIRO Australian Animal Health Laboratory; Navy Medical Research Unit-2, funded directly by DARPA; University of California, Los Angeles; University of Chicago Medical School; and University of Texas Medical Branch. The team will study air-borne highly pathogenic avian influenza virus in birds and small mammals, and tick-borne Crimean-Congo hemorrhagic fever virus.
  • The Center for Comparative Medicine and the One Health Institute at the University of California, Davis, under principal investigator Dr. Peter Barry and co-PI Dr. Brian Bird, respectively, lead a team made up of the Leibniz Institute for Experimental Virology; Mount Sinai School of Medicine; Rocky Mountain Laboratories of the National Institutes of Health (NIH), to be funded directly by DARPA; The Vaccine Group, Ltd., a spin-out of University of Plymouth; University of Glasgow; University of Idaho; and University of Western Australia. The team will examine Lassa virus spillover from rodents, and study Ebola virus in rhesus macaques.
  • The Institut Pasteur, under principal investigator Dr. Carla Saleh, leads a team made up of Institut Pasteur International Network partners in Cambodia, Central African Republic, France, French Guiana, Madagascar, and Uruguay; Latham BioPharm Group; and Virginia Polytechnic Institute and State University. The team will study several mosquito-borne arboviruses, which refers broadly to animal or human viruses transmitted by insects, as well as mosquito-specific viruses that could interfere with arbovirus infection in the insect vector.
  • Montana State University, under principal investigator Dr. Raina Plowright, leads a team made up of the Cary Institute of Ecosystem Studies; Colorado State University; Cornell University; Griffith University; Johns Hopkins University; NIH's Rocky Mountain Laboratories, funded directly by DARPA; Pennsylvania State University; Texas Tech University; University of California, Berkeley; University of California, Los Angeles; and University of Cambridge. The team will study henipavirus spillover from bats. The henipavirus genus of viruses contains multiple biothreat agents as categorized by NIH and the Centers for Disease Control and Prevention (CDC).
  • The Pirbright Institute, under principal investigator Dr. Luke Alphey, leads a team made up of the University of Nottingham and the University of Tartu. The team seeks to disrupt mosquito transmission of flaviviruses, which include Dengue fever, West Nile, and Zika viruses.

Modeling and quantification are as important as new experimental technologies in preventing cross-species jumps. The results from modeling will inform when, where, and at what levels such interventions could be applied to achieve the greatest health benefits. Interventions under consideration include animal- or insect-targeted vaccines, therapeutic interfering particles, gene editors, and indirect approaches informed by environmental and ecological factors that affect how viruses are spread — for instance, understanding the environmental stressors that drive bats into closer contact with humans and devising mitigating options to reduce the likelihood of that contact.

The research teams' approaches each come with a unique set of potential benefits and challenges, and the teams are responsible for assessing and demonstrating to DARPA the safety, efficacy, stability, and controllability of their proposed interventions. In the future, these considerations could factor into decisions by the ultimate end users — communities, governments, and regulators — on which strategies to pursue to prevent new zoonoses.

DARPA and the PREEMPT teams receive guidance from independent expert advisors in the ethical, legal, social, and regulatory aspects of the life sciences. These individuals include Dr. Claudia Emerson, director of the Institute on Ethics & Policy for Innovation at McMaster University; Dr. Matt Kasper, legislative liaison for the U.S. Navy's Bureau of Medicine and Surgery, and a former deputy director of field laboratory operations at the Naval Medical Research Center; and Dr. Steve Monroe, associate director for Laboratory Science and Safety at the CDC, and a former deputy director of the CDC's National Center for Emerging and Zoonotic Infectious Diseases.

The teams also benefit from established relationships with local universities, communities, and governments based on prior or ongoing research. These relationships will facilitate initial field collection and help to familiarize stakeholders with PREEMPT technologies as they are being developed. DARPA is also beginning outreach to the WHO as a potential avenue for future transition of PREEMPT technologies.

DARPA intends that PREEMPT teams will perform fundamental research and publish results for review by the broader scientific community.

https://www.darpa.mil/news-events/2019-02-19

On the same subject

  • What the Army’s TITAN program means to multidomain operations

    June 11, 2020 | International, C4ISR

    What the Army’s TITAN program means to multidomain operations

    Nathan Strout For a little more than one year, Brig. Gen. Rob Collins served as the program executive officer for Intelligence, Electronic Warfare and Sensors (IEW&S), where he was responsible for ensuring the soldier can detect, recognize and identify the enemy. Collins' vast portfolio included airborne and terrestrial sensors, position, navigation and timing devices, biometric solutions, and the TITAN ground station program, which will take data from aerial, terrestrial and space sensors to distribute essential data to shooters. The officer has a long career working in this arena: he previously served as project manager for the Army's Distributed Common Ground System and before that as product manager for the Warfighter Information Network-Tactical (WIN-T) Increments 2 and 3. On June 1, Collins officially took over as the new head of the Army's Program Executive Office – Command, Control and Communications (Tactical) where he will oversee the Army's network modernization efforts and work with the network cross functional team at Army Futures Command. In May, during his final days at PEO IEW&S, Collins talked to C4ISRNET's Nathan Strout about his approach to acquisitions, how the Army fits into Joint All Domain Command and Control, and the legacy he'll leave at the program office. This interview has been edited for clarity and length. C4ISRNET: How has your office helped the Department of Defense's shape its approach to Joint All Domain Command and Control? COLLINS: Enhancing deep sense and linking sensor to shooter is fundamental to our Army multi-domain operations concept, and really, the future of large-scale ground combat operations. And specifically for our PEO, we've been active partners in JADC2 efforts, working closely with our network (cross functional team) and our PEO C3T partners and the Assured Position Navigation and Timing cross functional-team in particular and the ISR task force at large, which is led by the G2. We're working on integrated architectures, multi-functional sensors that are integrated within the network for both [data] transport and mission command, and really solutions that are tailored to meet the unique requirements of our Army ground force. And when I say that, [I meant that they are] really at scale and they can meet the mobility requirements of our ground force. We operate at a scale and at an expeditionary mobile fashion which makes the Army a little bit unique. I'll tell you the collaborations that we've embarked upon with the [program officers] really assisted in some common design principles and components to assist in interoperability and really enabling sensor to shooter. Most recently within the PEO, we really helped the Army with some deep sensing ground stations — TITAN circuits if you will — that participated in some sensor to shooter threads in a training exercise [outside the continental United States]. So that really informed our approach. Across the PEO moving forward we've identified a lot of collaborative areas for experimentation demonstrations, tech maturity and really focused in on sensor integration and really data — how do we share data best across the battlefield? C4ISRNET: From the outside, it seems like TITAN will be an essential piece to the entire JADC2 concept, especially for the Army. How are you approaching redundancy and survivability to that system? COLLINS: TITAN is certainly a significant focus area in the modernization effort. It's a key component for our deep sense capability and really being scalable and expeditionary as an intelligence ground station and supporting commanders across the multi-domain operations battlefield framework. And we're really looking at TITAN to be kind of a LEGO approach that can be tailored based on the echelon it supports. And yes, one of the tenets is that it's going to leverage a multi-layered approach, a robust set of nodes from space, from high-altitude aerial to terrestrial sensors and assist with target nominations and link fires, command and control, informed by all the multi-disciplines of intelligence. And really as it connects all these various feeds, hundreds of thousands of intelligence feeds, it's going to employ artificial intelligence and machine learning to rapidly synthesize that information into meaningful info at the speed of battle —sometimes what we say is time can almost become a weapon in and by itself. Part of the analysis is taking a look at primary and alternate communications, what we call PACE, as part of the design, and I'll tell you TITAN is going to consist of a number of assured communications capabilities designed in the PACE plan, from Beyond Line-of-Sight communications, common tactical network components, direct downlinks, software-defined radios, and other IT and non-IP options that really span the gambit of the security domain. So we understand the criticality of PACE and it's one of these that we'll work closely with our network and APNT CFT partners as we continue to refine and define the concept. C4ISRNET: Speaking more broadly, a key function of JADC2 is being able to network with the other services and pull in their information to your shooters. When you look to the other services, what are the platforms, networks, or developments that you're excited to see feed into TITAN and other Army systems? COLLINS: We're always looking for opportunities to leverage national and other mission partner information, and that can span a number of sense capabilities, certainly within space. We certainly watch all things that are going on within low Earth orbit, capabilities that will provide a lot of opportunity. Across the joint force there are a number of areas — certainly within the Air Force — that have the ability to do deep sense with aerial platforms at altitude, so we watch that closely. And I would just tell you, even in the commercial arena even as far as the geospatial information there is a lot of collect capability. TITAN is really adopting an open systems architecture kind of baked in from the beginning [where it can take data from multiple sources], whether it's a [science and technology] effort — which could come from the Army or another agency — for intelligence warning capability or detect/assess/decide-type capability, or if it's leveraging a mission or national partner capability as I mentioned for deep sense, or really even adopting a commercial capability like geospatial collect or adopting a high performance data platform. C4ISRNET: Leaders at the Space Development Agency frequently note that the Army is the biggest customers for data collected from space. Can you speak a little bit about how you're looking at their architecture and tying into their transport layer? COLLINS: At least on the ISR side, we work closely with many of our partners as we look at opportunities to be able to leverage investments that they're making into the space sense capability, and certainly some of the things we have to be conscious of are the responsiveness to our tactical command. If they have intelligence requirements [we need to be able] to provide those back so we can get the persistent stare or the on demand access that we need for the tactical war fight. We certainly are also aware as we push that information down, some of the impacts that it may have on the Army networks that often operate on disconnected, intermittent, limited bandwidth environments, so to the extent that we can do processing as far forward at the point of collect and sense so we can only distribute the information that's absolutely necessary, we're working those concepts to do that. And that's where the artificial intelligence and machine learning comes into play. C4ISRNET: How have acquisitions changed over the last few years? From the outside we've seen a lot more usage of Other Transaction Authorities across the Department. What is your thinking on OTAs and other acquisition vehicles? COLLINS: We have really adapted our acquisitions — now more than ever — using more agile and more tailored acquisition approaches. Each endeavor, each capability that we go to pursue, often has a unique set of circumstances such as the technology maturity, the types of requirements, the types of things that we need to integrate—even our intellectual property approaches. Now more than ever, we've got multiple pathways on the acquisition approach that we can pursue: tailoring traditional, pursuing mid-tier, there's now software pathways, and there's always quick reaction and engineering change proposals to existing programs. So there's a number of different approaches, and I would tell you, too, our ability to involve soldiers in the operational feedback and operational perspective in the process is also kind of new and something that we've really underscored as part of the process. That starts not only from the requirements process, but how we include them in our source selection to assessing soldiers' hands-on kit and providing that feedback. OTA is just another tool that we have at our disposal. Certainly, if we need to do a little bit more maturation of prototypes prior to finalizing requirements, the OTA does offer an opportunity to more quickly pursue those prototypes in advance of transitioning into a more traditional FAR-type approach. I think there's a lot of flexibility and we're starting to do our critical thinking to decide how we approach each acquisition, because each acquisition and capability is unique. I'll tell you the other thing that we're really doing too is—where appropriate—exercising a DevOps or DevSecOps type of approach, and really that's where you bring material developer, combat developer, user, interoperability certifier, tester, and even to the extent the accrediter for those approaches, and they're all collectively together so you do things in parallel and you can dramatically speed up the process. Those are a number of things that we are really using at our disposal to move both more rapidly but also more efficiently and effectively. C4ISRNET: How do you incorporate smaller, nontraditional vendors that can bring in solutions? How do you bring more people into the fold, especially in tech hubs like Silicon Valley? COLLINS: We've got a lot of footprints in a lot of these technical hubs ... I would tell you that we've also done a tremendous amount of industry outreach even within the portfolio. I think in my tenure, in about a year I've probably done close to almost 200 industry engagements, and that spans from small, medium and large. And we're continuously trying to encourage and build relationships beyond just the traditionals. It is probably one of the advantages of the OTA that we've got, to be able to attract non-traditionals. I think there's other opportunities that we've got within Small Business Innovative Research-type initiatives that we've pursued, and then also CRADAs, the Cooperative Research and Development (Agreements). So we kind of span the gamut of that and I'll tell you we've got a pretty healthy teaming relationship between us and the [cross functional teams] to be able to get out there and attract that type of non-traditionals that really have a lot of the innovative and forward thinking ideas that we want to bring into our Army. C4ISRNET: We know a lot of the programs at places like PEO IEW&S take years to develop, with multiple PEOs overseeing and influencing different platforms. As you finish out your tenure, what are the milestones, programs you're proud of? COLLINS: First and foremost, I'll depart extremely proud of the people and the mission that the PEO IEW&S portfolio has accomplished and continues to accomplish. I'll tell you one of the unique things about our portfolio is about 50 percent of our programs support overseas operations, and so we do a significant amount of investment of things that are going on abroad. Much of our Army is deployed and so for that I'm extremely proud. I'll tell you the other thing — I think we have established a healthy culture that is ready, that is resilient and adaptive to change. And I think that has certainly been one thing that I'll be proud of, that I think will be a lasting legacy within the organization. We kind of walked in focused on a couple basic attributes. First and foremost, people and leadership was one. Two, exercising acquisition discipline. Three, integrating our kits so it can collectively operate and inform on the battlefield. And then four, really working with our partners and stakeholders. I think in each one of those areas we've made tremendous progress and really established a lot of momentum. Some of the major programmatics moving forward ... the Terrestrial Layer System, I think we've made some good progress there. Missile Defense and Space Systems set the conditions for our future aerial deep sense capability and really tightened kind of the major deep collect and nesting in with a lot of collecting in space and with our national mission partners. And then all of that data coming down to the foundational component are probably some of the big areas where we've established a lot of positive, irreversible momentum that will allow us to move forward on our Army modernization front. C4ISRNET: And as you move over to PEO C3T, what are you excited to tackle there and what lessons will you bring with you from PEO IEW&S? COLLINS: Well, I must admit that I am a signal officer and so I am excited to return to my roots as a network professional. And so I do find very much the network (to be) an exciting endeavor, and so I'm looking forward to getting back and contributing with the team. And I think what I would certainly take with me is that ... I have a better appreciation of the types of information, the types of data, the types of intelligence ... that need to traverse our networks, the type of demands that it puts on the network, the types of speed of service and quality of service and performance that are required to support those users of the network. So I think that's one of the key things that I'll take with me as I get ready to move over and be part of the C3T team, which I'm very excited (about). I've been very thankful for the experience here at the IEW&S team— a phenomenal group of professionals — and I'm excited to continue my Army mission. https://www.c4isrnet.com/battlefield-tech/it-networks/2020/06/09/what-the-armys-titan-program-means-to-multidomain-operations/

  • The US Air Force has built and flown a mysterious full-scale prototype of its future fighter jet

    September 15, 2020 | International, Aerospace

    The US Air Force has built and flown a mysterious full-scale prototype of its future fighter jet

    By: Valerie Insinna WASHINGTON — The U.S. Air Force has secretly designed, built and flown at least one prototype of its enigmatic next-generation fighter jet, the service's top acquisition official confirmed to Defense News on Sept. 14. The development is certain to shock the defense community, which last saw the first flight of an experimental fighter during the battle for the Joint Strike Fighter contract 20 years ago. With the Air Force's future fighter program still in its infancy, the rollout and successful first flight of a demonstrator was not expected for years. “We've already built and flown a full-scale flight demonstrator in the real world, and we broke records in doing it,” Will Roper told Defense News in an exclusive interview ahead of the Air Force Association's Air, Space and Cyber Conference. “We are ready to go and build the next-generation aircraft in a way that has never happened before.” Almost every detail about the aircraft itself will remain a mystery due to the classification of the Next Generation Air Dominance program, the Air Force's effort for fielding a family of connected air warfare systems that could include fighters, drones and other networked platforms in space or the cyber realm. Roper declined to comment on how many prototype aircraft have been flown or which defense contractors manufactured them. He wouldn't say when or where the first flight occurred. And he refused to divulge any aspect of the aircraft's design — its mission, whether it was uncrewed or optionally crewed, whether it could fly at hypersonic speeds or if it has stealth characteristics. Those attributes, he said, are beside the point. The importance, Roper said, is that just a year after the service completed an analysis of alternatives, the Air Force has proven it can use cutting-edge advanced manufacturing techniques to build and test a virtual version of its next fighter — and then move to constructing a full-scale prototype and flying it with mission systems onboard. “This is not just something that you can apply to things that are simple systems” like Boeing's T-7 Red Hawk trainer jet, the first Air Force aircraft to be built using the “holy trinity” of digital engineering, agile software development and open architecture, Roper said. “We're going after the most complicated systems that have ever been built, and checked all the boxes with this digital technology. In fact, [we've] not just checked the boxes, [we've] demonstrated something that's truly magical.” Now, the Next Generation Air Dominance program, or NGAD, sits at a decision point. Roper declined to say how quickly the Air Force could move its next-gen fighter into production, except to say “pretty fast.” But before the service decides to begin producing a new generation of fighters, it must determine how many aircraft it will commit to buy and when it wants to start purchasing them — all choices that could influence the fiscal 2022 budget. The program itself has the potential to radically shake up the defense industry. Should the Air Force move to buy NGAD in the near term, it will be adding a challenger to the F-35 and F-15EX programs, potentially putting those programs at risk. And because the advanced manufacturing techniques that are critical for building NGAD were pioneered by the commercial sector, the program could open the door for new prime contractors for the aircraft to emerge — and perhaps give SpaceX founder Elon Musk a shot at designing an F-35 competitor. “I have to imagine there will be a lot of engineers — maybe famous ones with well-known household names with billions of dollars to invest — that will decide starting the world's greatest aircraft company to build the world's greatest aircraft with the Air Force is exactly the kind of inspiring thing they want to do as a hobby or even a main gig,” Roper said. The disclosure of a flying full-scale fighter prototype could be just what the Air Force needs to garner more financial support from Congress during a critical time where the service is facing budget constraints and needs to gain momentum, said Mackenzie Eaglen, a defense budget analyst with the American Enterprise Institute. “If you can quickly get to something and show progress through product, it just changes the whole dynamic for the Hill,” she said. “[Roper has] got so many headwinds, it seems this would be a likely avenue to show conceptual success for his ideas.” A radical new acquisition Flying a prototype of its future fighter was the easy part. Now the Air Force must choose whether to commit to a radical method of buying it. Over the last 50 years, the U.S. industrial base has dwindled from 10 manufacturers capable of building an advanced fighter to only three defense companies: Lockheed Martin, Boeing and Northrop Grumman. The time it takes the Air Force to move a new fighter from research and development to full-rate production has stretched from a matter of years to multiple decades. The result is that every fighter program becomes existential for companies, who fight to prove that they can meet technical requirements during the development and production phase at a lower cost than their competitors. The companies are finally able to turn a profit during the later years of a program, when they become locked in as sustainment providers with the technical knowledge necessary for upgrading, repairing and extending the life of their product — often with little congressional interest or scrutiny. “The sustainment account is a black hole that nobody understands. The [operation and maintenance] account is a black hole that no one can figure out,” Eaglen said. “The person who can change sustainment can change the acquisition game, writ large.” For the Air Force, the turning point is when an aircraft hits 15 years old. At that age, maintenance costs compound rapidly, growing another 3-7 percent every year, Roper wrote in a Sept. 15 document titled “Take the Red Pill: The New Digital Acquisition Reality.” But what if instead of spending significant funds on sustaining old jets, the Air Force used that money to buy new ones? Instead of buying a large quantity of a single fighter over decades and retaining each plane for 30 years or more — as is currently the norm — the “Digital Century Series” model, proposed by Roper, posits that advanced manufacturing and software development techniques make it possible for the Air Force to rapidly develop and buy aircraft more frequently, much as the service did during the 1950s when it bought six fighters from six companies just years apart from each other during the original Century Series. In August, Air Force's advanced aircraft program office completed a business case analysis of the Digital Century Series model meant to validate whether the idea was technically feasible and, more importantly, whether it could save money. Leaders found that by applying digital manufacturing and development practices — as used by the T-7 program, as well as in the development of the NGAD prototype — it could drop the total life cycle cost of a next-gen fighter by 10 percent over 30 years compared to legacy fighters like the F-35 and F-15, Roper wrote. But for the same price as a single variant of a digitally manufactured fighter produced with a 30-year life cycle, the Air Force could buy a new fighter every eight years and replace them after 16 years — before the plane reaches the 3,500 flight-hour mark here it starts needing heavy overhauls and expensive modifications to extend its service life. “I don't think it's smart thinking to build one and only one aircraft that has to be dominant for all missions in all cases all the time,” he said. “Digital engineering allows us to build different kinds of airplanes, and if we're really smart ... we ensure smart commonality across the fleet — common support equipment, common cockpit configurations, common interfaces, common architecture, even common components like a landing gear — that simplify the sustainment and maintenance in the field.” The main difference is that the Air Force would flip from spending the majority of fighter program costs upfront instead of at the end of the aircraft's life. To continuously design new fighter jets, the service would keep multiple vendors constantly under contract for the development of new planes, choosing a new design about every eight years. To make a business case that is profitable for industry, it would then buy batches of about 50-80 aircraft every year. The result is a 25 percent increase in development costs and an 18 percent increase in production costs. However, the price of modernizing aircraft would drop by 79 percent while sustainment costs are basically cut in half, Roper wrote in the paper. “I can't make both ends of the life cycle go away; industry has to make a profit somewhere,” Roper said. “And I'm arguing in the paper that if you get to choose what color of money you use for future air superiority, make it research, development and production because it's the sharp point of the spear, not the geriatric side that consumes so much of our resources today.” There is also a strategic benefit to continuous fighter production and development, Roper said. It puts China on the defense, having to respond to U.S. technical advances as new capabilities — whether they're hypersonic missiles or drone wingmen — are matured and spiraled into the fighter's production. “This speeds up the pace at which we can do things so that we can be the disrupter instead of the disrupted, but it does so in a way that can't be undermined by throwing cheap labor at the problem,” he said. The next step is for Air Force leadership to decide how much it can afford for the program in FY22 and whether it will adopt the Digital Century Series model for developing the aircraft. “What we need to do going forward is simply understand the [Department of the Air Force's] level of financial commitment and the date they want us to charge towards for initial operations, and we can fit the acquisition strategy for [NGAD] to it, and explain how quickly we can afford to spiral and when we need to retire the aircraft to generate enough savings to afford those spirals,” he said. “Perhaps getting to the fastest [initial fielding date] may not be the most important thing. It may be important for us to push the [technical] boundaries more. Those are decisions that I've given for leadership to think about. But every decision I've given them is a better decision over the legacy ones.” If the Air Force is going to get financial support for a business plan that requires taxpayers to pay a higher upfront cost for fighter aircraft, it must clearly identify desired combat capabilities, said Rebecca Grant, an aerospace analyst with IRIS Independent Research. “Now we have the F-35, F-15EX and the Digital Century Series' small batch costs,” she said. “If it's that great, maybe it's worth the upfront cost. I could argue that, for sure. Is this the new F-117, which was similar batch size at similar cost and worth every penny? We just don't know.” On the technical side, the Air Force needs to solidify a rigorous, standardized method of conducting test activities in a virtual environment using modeling and simulation tools that can cut down the amount of time needed for live flight tests. It also needs industry to buy in to coding via a government-owned computing environment, Roper said. “We can't have every industry partner creating their own mechanism,” Roper said. “We have to have just as rigorous a process for digital design and assembly as we do for physical design assembly. So we will own that in the government, we will certify that in the government.” And — perhaps most critically — the Air Force will have to sell the concept to Congress. Roper has briefed staff members on the defense committees, and he held classified sessions with many of the lawmakers who sit on those panels to present findings of the business case study as well as the detailed progress of NGAD development and test activities. “I had some tough audiences on this. I've had people that I've been told want to cut the program or they don't understand why we need it,” he acknowledged. “But I have not left a single one of those briefings with anything other than [lawmakers saying]: ‘This is the future, we ought to do it now. And why aren't we going faster?' And the answer [to] why we aren't going faster is simply money. We can push the accelerator down more today because the digital technology allows it.” https://www.defensenews.com/breaking-news/2020/09/15/the-us-air-force-has-built-and-flown-a-mysterious-full-scale-prototype-of-its-future-fighter-jet

  • Airbus lands $1.27 billion French air tanker upgrade, service deals | Reuters

    October 23, 2023 | International, Land, C4ISR

    Airbus lands $1.27 billion French air tanker upgrade, service deals | Reuters

    Airbus said on Monday it had signed two contracts valued at 1.2 billion euros ($1.27 billion) to provide capability enhancement and in-service support of France's fleet of A330 MRTTs (Multi Role Tanker Transports).

All news