1 avril 2024 | International, Terrestre

US Army refreshes competition for short-range laser

The Army will begin a directed-energy test campaign to find the sweet spot for laser weapons when it comes to lethality, reliability and cost.


Sur le même sujet

  • Airbus Defence and Space : focus sur le nouveau radar Captor E-Scan

    6 juillet 2020 | International, Aérospatial, C4ISR

    Airbus Defence and Space : focus sur le nouveau radar Captor E-Scan

    Air & Cosmos consacre un article aux performances du nouveau radar à balayage électronique Captor E-Scan. Airbus Defence and Space a récemment remporté un contrat pour le développement, la fourniture et l'intégration de 115 radars Eurofighter E-Scan destinés à la flotte allemande et espagnole d'Eurofighter. Ce radar, opérant en bande X, améliore « la portée efficaces des missiles air-air de l'avion et permet une détection et un suivi plus rapides et précis de plusieurs aéronefs en même temps », rappelle le magazine. « Le contrat pour le radar Captor E-Scan est une réalisation majeure pour équiper l'Eurofighter de capteurs qui assurent aujourd'hui la domination de l'avion », a déclaré Dirk Hoke, CEO d'Airbus Defence and Space. Air & Cosmos du 3 juillet

  • Pentagon’s AI office rebooting global experiments for JADC2

    8 mai 2023 | International, C4ISR

    Pentagon’s AI office rebooting global experiments for JADC2

    Craig Martell said his team took the reins of the Global Information Dominance Experiments to “understand what’s the right way to get after JADC2.”

  • Extending Field of View in Advanced Imaging Systems

    12 août 2019 | International, C4ISR

    Extending Field of View in Advanced Imaging Systems

    New program focuses on developing curved infrared focal plane arrays to improve optical performance and widen field of view while reducing system size of military imagers The military relies on advanced imaging systems for a number of critical capabilities and applications – from Intelligence, Surveillance, and Reconnaissance (ISR) and situational awareness to weapon sights. These powerful systems enable defense users to capture and analyze visual data, providing key insights both on and off the battlefield. Today, nearly all imaging systems rely on detector arrays fabricated using planar processes developed for electronic integrated circuits on flat silicon. While significant progress has been made in advancing these technologies for narrow field of view (FOV) systems, optical aberrations can limit the performance at the periphery in wide FOV systems that then require large, costly, and complex optics to correct. The trade-off for correcting optical aberrations by using large, heavy lenses is a reduction in optical signal and a large size penalty, which limits their use for new and emerging capabilities. “Tremendous progress has been made over the past 20 years towards making multi-megapixel infrared (IR) focal plane arrays (FPA) for imaging systems cost effective and available to the Department of Defense,” said Dr. Whitney Mason, a program manager in DARPA's Microsystems Technology Office (MTO). “However, limitations to the technology's performance and size remain. Current advances on the commercial side have shown the viability of small area, curved FPAs (CFPAs) for visible cameras. While these technologies have shown modest benefits, more must be done to achieve the performance and size requirements needed for imaging systems used in emerging defense applications.” DARPA developed the FOcal arrays for Curved Infrared Imagers (FOCII) program to expand upon the current commercial trend for visible sensor arrays by extending the capability to both large and medium format midwave (MWIR) and/or longwave (LWIR) infrared detectors. The program seeks to develop and demonstrate technologies for curving existing state-of-the-art large format, high performance IR FPAs to a small radius of curvature (ROC) to maximize performance, as well as curve smaller format FPAs to an extreme ROC to enable the smallest form factors possible while maintaining exquisite performance. FOCII will address this challenge through two approaches to fabricating a curved FPA. The first involves curving existing state-of-the-art FPAs, while keeping the underlying design intact. The focus of the research will be on achieving significant performance improvements over existing, flat FPAs, with a target radius of curvature of 70mm. The fundamental challenge researchers will work to address within this approach is to mitigate the mechanical strain created by curving the FPGA, particularly in silicon, which is very brittle. The second approach will focus on achieving an extreme ROC of 12.5 mm to enable a transformative reduction in the size and weight compared to current imagers. Unlike the first approach, researchers will explore possible modifications to the underlying design, including physical modifications to the silicon that could relieve or eliminate stress on the material and allow for creating the desired curvature in a smaller sized FPA. This approach will also require new methods to counter the effects of any modifications during image reconstruction in the underlying read-out integrated circuit (ROIC) algorithm. The FOCII program is hosting a proposers' day on August 13, 2019 at the Executive Conference Center, 4075 Wilson Blvd., Suite 300, Arlington, Virginia, 22203 from 9:00 a.m. to 4:00 p.m. EDT. The purpose of this meeting is to provide information on the FOCII program, promote additional discussion on this topic, address questions from potential proposers, and provide an opportunity for potential proposers to share their capabilities and ideas for teaming arrangements. The Special Notice for can be found here, https://www.fbo.gov/index.php?s=opportunity&mode=form&id=4c8a360d1f5be2e1b7e784f86b7d42fb&tab=core&_cview=0 Full details are available in the FOCII Broad Agency Announcement on FBO.gov: https://go.usa.gov/xV3EH. https://www.darpa.mil/news-events/2019-08-09

Toutes les nouvelles