22 juin 2018 | International, Naval

Upgrading US Navy ships is difficult and expensive. Change is coming

By:

WASHINGTON ― The U.S. Navy is looking at extending the life of its surface ships by as much as 13 years, meaning some ships might be 53 years old when they leave the fleet.

Here's the main problem: keeping their combat systems relevant.

The Navy's front-line combatants ― cruisers and destroyers ― are incredibly expensive to upgrade, in part because one must cut open the ship and remove fixtures that were intended to be permanent when they were installed.

When the Navy put Baseline 9 on the cruiser Normandy a few years ago, which included all new consoles, displays and computer servers in addition to the software, it ran the service $188 million.

Now, the capability and function of the new Baseline 9 suite on Normandy is staggering. The cost of doing that to all the legacy cruisers and destroyers in the fleet would be equally staggering: it would cost billions.

So why is that? Why are the most advanced ships on the planet so difficult to keep relevant? And if the pace of change is picking up, how can the Navy stay relevant in the future without breaking the national piggy bank?

Capt. Mark Vandroff, the current commanding officer of the Carderock Division of the Naval Surface Warfare Center and former Arleigh Burke-class destroyer program manager, understands this issue better than most. At this week's American Society of Naval Engineers symposium, Vandroff described why its so darn hard to upgrade the old ships and how future designs will do better.

Here's what Vandroff had to say:

“Flexibility is a requirement that historically we haven't valued, and we haven't valued it for very good reasons: It wasn't important.

“When you think of a ship that was designed in the ‘70s and built in the ‘80s, we didn't realize how fast and how much technology was going to change. We could have said: ‘You know what? I'm going to have everything bolted.' Bolt down the consoles in [the combat information center], bolt in the [vertical launch system] launchers ― all of it bolted so that we could more easily pop out and remove and switch out.

“The problem was we didn't value that back then. We were told to value survivability and density because we were trying to pack maximum capability into the space that we have. That's why you have what you have with the DDG-51 today. And they are hard to modernize because we valued survivability and packing the maximum capability into the minimum space. And we achieved that because that was the requirement at the time.

“I would argue that now as we look at requirements for future ships, flexibility is a priority. You are going to have to balance it. What if I have to bolt stuff down? Well, either we are going to give up some of my survivability standards or I'm going to take up more space to have the equivalent standards with an different kind of mounting system, for example. And that is going to generate a new set of requirements ― it's going to drive design in different directions than it went before.

“I suppose you could accuse the ship designers in the 1980s of failure to foresee the future, but that's all of us. And the point is they did what they were told to do. Flexibility is what we want now, and I think you will see it drive design from this point forward because it is now something we are forced to value.”

https://www.defensenews.com/naval/2018/06/21/upgrading-us-navy-ships-is-difficult-and-expensive-change-is-coming/

Sur le même sujet

  • GA-ASI Announces Streamlined ISR Tools for UAS

    3 juillet 2019 | International, Aérospatial

    GA-ASI Announces Streamlined ISR Tools for UAS

    Author: Mike Rees General Atomics Aeronautical Systems, Inc. (GA-ASI) has unveiled its new Integrated Intelligence Center (I2C), which presents innovative ways to improve the user experience for operators of Remotely Piloted Aircraft (RPA) using automation and user experience-based design (UX). “I2C will rapidly transform data into actionable intelligence,” said David R. Alexander, president, GA-ASI. “We see benefits to the warfighter on many fronts, including the reduction of operational cost – whether it's Ground Ops, Air Ops, or Intel Ops. By combining XC2, Automatic Takeoff and Landing, MMC and our single-seat Certifiable Ground Control Station, we will reduce manning by 50 percent.” GA-ASI's modular and open software architecture designs promote horizontal integration of third party software and rapid integration of new capabilities, making the following developments the ideal set of Intelligence, Surveillance and Reconnaissance (ISR) tools for streamlined and improved collaboration: eXpeditionary Command & Control (XC2): XC2 laptop leverages GA-ASI's Advanced Cockpit development by porting select capabilities to a ruggedized laptop. A forward-deployed maintainer can use the laptop to employ automated pre-flight and post-flight checklists that reduce setup times by up to 50 percent, and reduces the airlift requirements by eliminating the need for a forward-deployed Ground Control Station (GCS). Certifiable Ground Control Station (CGCS): The CGCS enables single-seat operations to reduce manpower requirements. Its tactical situation display unifies ISR and C4ISR data, as well as mission planning into a single Common Operating Picture (COP). The integrated Collins Pro Line Fusion enables CGCS certifiability for operation in national airspace. Multi-Mission Controller (MMC): The MMC enables a single user to safely control multiple aircraft and perform transit and routine ISR missions using a hand controller. When an aircraft is tasked with performing more dynamic ISR or a strike mission, MMC allows a rapid handoff of the aircraft to a dedicated GCS, where a mission crew can take control. Metis – Automated intelligence Collection Management: Metis is a map-based interface that enables a pre-approved Metis user to request ISR products from the RPA, similar to ordering a car from Uber. Once the Metis user sends a task, it's transmitted to MMC in real time. The MMC user selects the task and an integrated third party auto-router automatically generates a safe route to the requested target. STARE Imagery: The System for Tactical Archival, Retrieval, and Exploitation's (STARE) Common Operation Picture shows aircraft locations, where the operator can look and what they are looking at. The Multi-INT exploitation tool ingests, archives, disseminates and makes ISR data discoverable for imagery analysts to utilize. STARE reduces data exploitation tasks from hours to minutes. Automation of Intel Ops: I2C integrates third party capabilities and software services to make Intel analysts more effective. Automated Activity Alerts – based on Multi-INT data correlation – reduces the need for eyes-on RPA sensor data to pick out significant activity. GA-ASI is partnering with best-of-breed companies specializing in Artificial Intelligence (AI) and Machine Learning with proven AI-based systems deployed across multiple commercial sectors. GA-ASI works with these businesses to train their AI capability with MQ-9, MQ-1C and Predator ISR data. These tools and capabilities are either operationally deployed, undergoing customer operational assessment or are actively flying aircraft. https://www.unmannedsystemstechnology.com/2019/06/ga-asi-announces-streamlined-isr-tools-for-uas/

  • Norway orders additional Naval Strike Missile

    11 septembre 2023 | International, Naval

    Norway orders additional Naval Strike Missile

    The value of the contract is MNOK 487.

  • Meta Given Deadline to Address E.U. Concerns Over 'Pay or Consent' Model

    23 juillet 2024 | International, C4ISR, Sécurité

    Meta Given Deadline to Address E.U. Concerns Over 'Pay or Consent' Model

    European Commission challenges Meta's 'pay or consent' model, giving until September 2024 to address concerns or face potential sanctions.

Toutes les nouvelles