5 novembre 2020 | Local, Naval

The Future Canadian Surface Combatant

By Captain Christopher Nucci, Royal Canadian Navy

November 2020

Proceedings

Vol. 146/11/1,413

Canada is pursuing a single class of 15 surface combatants for the Royal Canadian Navy (RCN), unlike some of its allies who are building multiple classes of more specialized ships. A single variant Canadian Surface Combatant (CSC) is better than the project's original vision of two variants based on a common hull (the first a task group command/air-defense version, the other a more general-purpose/antisubmarine warfare version). While all naval force structure is essentially driven by national strategic defense and security interests, a single-class solution is based on three principal factors. First, it fits best for Canada's unique naval requirements shaped by its geography, modest fleet size, and the RCN's operational needs. Second, it optimizes effectiveness now and into the future, while responsibly seeking maximum cost efficiencies. Finally, it is an innovative approach that has only recently become both practical and advantageous because of recent technological developments, such as convergence and digitization.

The General Purpose Warship Moment

Naval force planning decisions must coexist in harmony with decisions regarding a navy's overall fleet mix of capital ships, “high-end” surface combatants, “low-end” combatants, and submarines—and the roles of each type.1 In particular, surface combatants have historically fulfilled one or two warfare roles, such as antiair and antisubmarine warfare. Until recently, fielding an affordable “general purpose warship” was too difficult to achieve. The technological limitations of the latter half of the 20th century and into the first decade of the 21st imposed inescapable constraints stemming from the necessary physical size and power requirements of electronics and equipment, along with the expensive and challenging integration of the various single-purpose weapons, sensors, communications, and command-and-control arrangements (as well as the operations and maintenance personnel) required for each role. These limitations could only be surmounted by increasing space, weight, crew size, and the commensurate complexity. As a result, many navies introduced multiple classes of surface combatants to handle the different warfare roles, as well as low-end ships (at less cost) to have sufficient numbers of ships available to respond to contingencies.

For the RCN, with a small force of submarines and no capital ships, the approach until now followed this pattern, with the Iroquois-class destroyers focused until their divestment on task group command and area air defense and the more numerous Halifax-class frigates acting as more general-purpose/antisubmarine warfare platforms. Canada's allies have had to confront similar considerations. For example, in the United Kingdom, the number of hulls and capabilities of the Type 26 (the CSC's parent design, known as the Global Combat Ship) are directly connected to the planned acquisition of less-capable Type 31 frigates, the existence of Type 45 antiair-warfare destroyers, a larger submarine fleet, and the importance of capital ships, such as Royal Navy aircraft carriers. For Australia (which is also acquiring the Type 26/GCS-derived Hunter-class), the requirement to protect amphibious ships, more submarines in the fleet, and a separate class of air-warfare destroyers are key factors. Different requirements ultimately lead to different priorities and trade-off decisions, and Canada's circumstances are unlike any others.

Canada's Geography, Fleet Size, and Operational Requirements

Aside from the overall fleet mix, the other considerations for any state's naval force structure are the geographic factors, overall fleet size, and operational requirements. In Canada's case, unique geography includes the bicoastal nature of the RCN's homeports in Victoria, British Columbia, and Halifax, Nova Scotia, and the tricoastal areas of responsibility in the Pacific, Arctic, and Atlantic. Each area is very distant from the others, and therefore any timely maritime response generally must come from the closest base. In other words, when you need a ship from the opposite coast for any unexpected reason, it is a long way to go. So, it is best if all ships are equally capable and allocated more or less evenly among homeports. Similarly, the RCN must consider the long-range nature of its ship deployments—even domestic ones—because of the significant distances to anticipated theaters of operation.

A single combatant class that can perform a wide range of tasks while remaining deployed best meets this challenge and provides more options to government when far away from homeport. For example, a CSC operating in the Asia-Pacific region as an air-defense platform for an allied amphibious task group can quickly respond to a requirement to hunt an adversary's submarine, if needed. Similarly, assembling a national naval task group of several multirole CSCs in response to a crisis is much more achievable when the RCN can draw from the whole surface combatant fleet to assign ships at the necessary readiness levels. The alternative may not guarantee a sufficient number of specialized variants needed for the task when the call comes. In other words, if any one ship becomes unavailable to perform a task for any reason, there is more depth available in the fleet to fill the gap and complete the mission. Consequently, having more ships of similar capabilities ensures a higher rate of operational availability, which is especially important with the RCN's relatively modest fleet size. For small fleets, a “high/low” mix of warships or multiple classes of more specialized combatants actually constrains operational availability.

Cost-Saving Value

While increasing complexity would ordinarily imply increasing cost, a single class of ships can actually present opportunities to increase cost efficiency. First, a single class of ships eliminates duplication of fixed program costs such as design and engineering and, during ship construction, further eliminates additional costs derived from retooling and pausing work in the shipyard between the construction of different classes, while achieving better learning curves and lowering overall costs per unit compared with two shorter construction runs. As each ship enters service, a single ship class in sufficient numbers has dedicated supply chains and more efficiency and equipment availability from the provision of common parts (especially given that two allies are procuring additional ships based on the common Type 26/GCS design.) Higher cost efficiencies in maintenance from labor specialization also can be expected, as well as the ability for more efficient repair training and use of required ship repair facilities and equipment. Furthermore, training costs associated with a single class are reduced through the ability to deliver common training modules to a larger student cohort, while simultaneously allowing for deeper knowledge and specialist personnel development among a larger pool of available crew with common qualifications.

This latter point cannot be overstated—crew availability is a key requirement for operational availability, and the efficiencies made possible with a single set of common qualifications and training enables a larger pool of available personnel to deploy and more flexibility for sustained operations at the unit level. It includes Royal Canadian Air Force maritime helicopter crews and embarked unmanned systems specialists, as well as Army, special operations forces, and even Royal Canadian Mounted Police personnel in a law enforcement mission who would require no additional conversion training between classes once familiar with the CSC's modular mission bay arrangement or boat launching procedures.

An Opportunity Enabled by Modern Technology

Compared with a few decades ago, several recent technological developments are making multirole ships much more practical. Information-age innovation is, in essence, enabling all the potential advantages a single class of surface combatants while minimizing the traditional disadvantages. For example, any operations room or bridge display can now easily show video or data feeds from any sensor, weapon, or software support system—convergence. Likewise, instead of several stand-alone unmanned systems controllers, consoles that can control any of the ship's unmanned air, surface, or subsurface system are becoming available. Widespread digitization has reduced space requirements, while increasing system capability, flexibility, and power and cooling efficiency. This miniaturization allows for smaller components that can fit into smaller spaces.

Multifunctionality can now be found in all kinds of components. For example, a single digital beam-forming radar can replace multiple traditional radars, software-defined radios can support different communications requirements on the fly, programmable multipurpose weapons can engage more than one kind of target but be fired from a common vertical launcher, and decoy launchers can now deploy a variety of defensive munitions. Multifunctionality even extends beyond individual systems to encompass features like the CSC's modular mission bay—a reconfigurable space able to accommodate and integrate any containerized payload imaginable. With an air-transportable, container-based set of payloads, embarking additional specialized equipment or capabilities into a deployed ship during an overseas port visit can be done in just a few days. These developments enable a single ship to rapidly transition to and execute many naval roles while defending itself against a myriad of threats.

Although a ship's overall capacity (e.g., the desired number of crew accommodated, missiles embarked, unmanned systems carried, endurance and seakeeping performance, etc.) will still be constrained by its size, a single ship class can have a full range of capabilities. The CSC balances multirole capabilities with a modest amount of capacity. For example, it has one main gun and 32 vertical-launch cells, one helicopter, one mission bay, one multifunction radar, and the ability to embark approximately 204 personnel for crew and mission personnel.

Further technological development and additional advantages will accrue from operating a single ship class, such as those from software development and data analytics. For example, the analysis of detailed technical data, such as system-error codes, from across the entire class in near-real time enables the efficient updating of control software to improve cyber security. Or, consider the ability to perform virtual research and development work on a digital twin of a physical system, such as a gas turbine, to examine performance limitations without risking the equipment itself. Data analytics performed on the same system when a part fails can help determine which sensors are critical and what patterns are early indicators of impending failure. This will allow the crew to perform preventive maintenance before the system fails catastrophically and should prevent failures in the other ships of the class. In a connected world, it is even possible to rapidly and remotely inject operational capability enhancements to deployed ships. Ultimately, the relative ease with which the software elements of a combat system can be changed will allow ships of the same class a greater capability to act and react with agility, the most efficient way to maximize potential for a relatively small fleet.

Acknowledging the unique Canadian geographical and operational requirements, the imposed limitations on naval force structure, and the need to maximize the RCN's effectiveness while seeking cost efficiencies calls for a single class of surface combatant—the current CSC project. Canada will benefit from this innovative solution for decades. The RCN is well-positioned to make the most of this new platform and the inherent flexibility and multirole capabilities it will bring. The Canadian government's decision to move forward with the CSC program as a single surface combatant class is not only eminently feasible, but also the most sensible for the situation we face.

https://www.usni.org/magazines/proceedings/2020/november/future-canadian-surface-combatant

Sur le même sujet

  • HMCS Corner Brook to become first sub equipped with new communications system

    21 janvier 2019 | Local, Naval

    HMCS Corner Brook to become first sub equipped with new communications system

    DAVID PUGLIESE, OTTAWA CITIZEN HMCS Corner Brook will be the first Canadian submarine to be equipped with a new communications system. The Universal Modular Masts or UMM for Canada's Victoria class submarines are part of an equipment suite provided by the Protected Military Satellite Communications project, according to the Department of National Defence. The estimated project cost for the submarine equipment suite, including installation, is approximately $70 million, while the overall PMSC project cost is approximately $592 million. The Protected Military Satellite Communication project is in collaboration with the U.S. and other allied nations and provides the Canadian military with secure, protected, jamming-resistant satellite communications on a near world-wide basis. The UMM will improve the Victoria-class as an intelligence, surveillance and reconnaissance platform, according to the DND. The mast and its associated equipment suite will provide near real-time high-speed communications with shore. Corner Brook is in its Extended Docking Work Period and installation of the mast is now underway. Babcock Canada Inc. is handling the installation under the aegis of the Victoria In-Service Support Contract. It is being done at CFB Esquimalt in British Columbia. The equipment was acquired through a foreign military sales acquisition. The cost for PMSC-supplied submarine equipment, including UMMs, is approximately $35 million, according to the DND. Installation of the UMM on Corner Brook will be complete in 2020. Installation on the other three submarines will be finished by 2026. https://ottawacitizen.com/news/national/defence-watch/hmcs-corner-brook-to-become-first-sub-equipped-with-new-communications-system

  • Québec accorde 350 000 $ à Zetane pour appuyer son projet en collaboration avec Rheinmetall Canada visant à développer des solutions d’entretien prédictif issues de l'intelligence artificielle

    10 décembre 2020 | Local, Aérospatial, Naval, Terrestre, C4ISR, Sécurité

    Québec accorde 350 000 $ à Zetane pour appuyer son projet en collaboration avec Rheinmetall Canada visant à développer des solutions d’entretien prédictif issues de l'intelligence artificielle

    [Montréal Canada; 10 décembre 2020] La technologie pour éviter les réparations coûteuses et prévoir les pannes d'équipement critiques des véhicules lourds vise à devenir courante au Québec gr'ce au soutien gouvernemental d'une initiative d'innovation. Spécialisée dans le déploiement de l'intelligence artificielle (IA) dans les industries, la start-up technologique montréalaise Zetane Systems a annoncé aujourd'hui l'octroi d'un financement par le ministère de l'Économie et de l'Innovation et Investissement Québec pour mettre en place des solutions d'entretien prédictif alimentées par l'IA avec l'entrepreneur de défense, Rheinmetall Canada, dont le siège social est à Saint-Jean-sur-Richelieu. L'aide financière non remboursable de 350 000 $ est accordée à Zetane par le biais du volet 1 du Programme innovation. « En s'appuyant sur l'intelligence artificielle, Zetane contribue à diminuer les coûts associés à la maintenance des véhicules lourds et à réduire notre empreinte écologique. Plusieurs secteurs d'activité, comme l'aérospatiale et la construction, pourront tirer des avantages importants de la technologie développée par cette jeune entreprise innovante. Ce sont des initiatives novatrices comme celle-ci qui réaffirment le leadership du Québec en intelligence artificielle », a souligné le ministre de l'Économie et de l'Innovation, Pierre Fitzgibbon. Obtenir un soutien financier pour de telles initiatives nécessite un processus de demande hautement compétitif et une évaluation détaillée par des experts du gouvernement et de l'industrie. Gr'ce au soutien et à la collaboration du gouvernement du Québec, le projet servira à introduire de nouvelles technologies et des opérations industrielles à fort potentiel d'amélioration des facteurs économiques, sociaux et environnementaux au Québec. Le financement des initiatives en innovation du gouvernement du Québec sert à favoriser l'avancement de projets d'innovation à haut risque qui ont beaucoup de potentiel pour assurer la compétitivité de l'industrie québécoise. « Les opportunités de financement du gouvernement du Québec méritent un soutien accru. Ils rendent possible la collaboration entre de grandes entreprises innovantes telles que Rheinmetall, même pendant une période économique difficile. Les investissements gouvernementaux dans l'innovation appliquée sont toujours une allocation intelligente de nos ressources qui permettent aux startups québécoises prometteuses de rester compétitives et de développer plus de prospérité pour tous », a déclaré le PDG et cofondateur de Zetane, Guillaume Hervé. Un moyen plus efficace pour prévoir et prévenir les problèmes mécaniques Plusieurs grandes industries - comme la construction, l'aérospatiale, les travaux municipaux et les mines - nécessitent la gestion de flottes de véhicules lourds. Qu'il s'agisse de camions, d'avions ou de trains, s'assurer que ces véhicules sont bien entretenus évite les accidents et les retards de projet. Le fait d'être bien entretenu réduit également les émissions de gaz à effet de serre car il permet aux véhicules de fonctionner à des performances optimales. Un défi auquel ces industries sont confrontées aujourd'hui est l'incapacité de personnaliser les routines d'entretien pour les véhicules particuliers, ainsi que l'incapacité de prévoir avec précision les pannes d'équipement. L'IA fournit un nouveau moyen d'analyser les données historiques d'entretien et de traiter les données des capteurs sur les véhicules afin de prédire l'usure mécanique avant que des problèmes surviennent. La technologie de vision par ordinateur basée sur l'IA permet également l'automatisation de certaines t'ches pour les inspections quotidiennes des véhicules. La force particulière de Zetane dans le projet réside dans la fourniture de son logiciel conçu spécifiquement pour le développement plus intuitif et efficace des applications industrielles de l'IA. Une fois livrés, Rheinmetall Canada acquerra des technologies d'IA uniques pour mieux servir ses clients avec des services d'entretien plus efficaces, précis et moins coûteux et fournir des véhicules de transport plus performants. « Nos forces chez Rheinmetall Canada proviennent de notre acceptation du changement technologique. Le partenariat avec des start-ups innovantes comme Zetane nous donne non seulement accès à des outils d'IA pratiques et de pointe développés pour l'industrie, mais nous permet également d'exécuter rapidement des preuves de concept expérimentales qui répondent aux besoins spécifiques de nos clients », a déclaré Roger Bolduc, directeur principal d'ingénierie chez Rheinmetall Canada. Des avantages au-delà de l'innovation Ce projet d'innovation vise à optimiser les capacités de Zetane à introduire l'entretien prédictif dans de nombreux secteurs industriels. Une fois le projet complété, Zetane utilisera son expérience avec Rheinmetall pour commercialiser l'entretien prédictive de l'IA auprès de nouveaux clients, permettant ainsi à la start-up québécoise d'élargir ses offres de services ici et à l'international. D'autres avantages futurs du projet identifiés dans la demande pour le Programme innovation comprennent d'importants facteurs sociaux et environnementaux. L'un des avantages est de conserver et d'élargir les possibilités d'emploi enrichissantes en technologie à Montréal et à Saint-Jean-sur-Richelieu. Les facteurs environnementaux comprennent la réduction des émissions de gaz à effet de serre gr'ce à des véhicules mieux entretenus. Les facteurs de santé et de sécurité incluent la possibilité d'avoir des espaces de travail plus sécuritaires gr'ce à la diminution des accidents causés par des pannes d'équipement. En plus de réduire les coûts d'exploitation dans le secteur privé, les économies réalisées gr'ce à l'entretien prédictif des véhicules municipaux peuvent réduire les coûts des travaux et des services municipaux financés par les citoyens. À propos de Zetane Systèmes Zetane Systems est une compagnie de logiciel spécialisée dans l'intelligence artificielle. Notre logiciel propriétaire s'intègre facilement aux plates-formes d'IA existantes et fournit un espace de travail visuel et intuitif pour la création de produits technologiques dans les sous-domaines de l'IA de l'apprentissage automatique. Le logiciel Zetane fournit un espace de travail digital pour développer des solutions d'IA visant à résoudre des problèmes réels en entreprise. Zetane veut rendre le développement de l'IA plus accessible dans les compagnies et promouvoir le développement des équipes internes capables d'exploiter, d'expliquer et de comprendre le fonctionnement des réseaux de neurones artificiels complexes. Pour ce faire, nous éliminons le problème de la boîte noire associé à l'IA et nous rendons l'IA plus disponible à divers professionnels dans divers secteurs d'activités gr'ce à notre logiciel facile-à-apprendre et à utiliser qui vient s'intégrer facilement aux outils de développement d'IA populaires. À propos de Rheinmetall Canada Rheinmetall Canada est fier d'être membre du groupe allemand Rheinmetall, le premier fournisseur européen de technologie militaire et un partenaire de longue date des forces armées. En tant qu'intégrateur de systèmes de renommée internationale, Rheinmetall Canada crée des solutions technologiquement avancées et entièrement personnalisées pour le marché mondial de la défense et de la sécurité. Situés dans ses installations de Saint-Jean-sur-Richelieu, d'Ottawa et d'autres endroits à travers le monde, plus de 375 employés mettent leur expertise au travail et repoussent leurs limites pour assurer l'innovation et la réussite de chaque mandat. Ministère de l'Économie et de l'Innovation sur les réseaux sociaux Facebook : facebook.com/EconomieQc LinkedIn : linkedin.com/company/économie-québec Twitter : twitter.com/economie_quebec Contact média : Jason Behrmann Directeur de marketing et communications info@zetane.com 514-835-7074

  • Foreign & Defence

    18 juin 2024 | Local, Naval

    Foreign & Defence

Toutes les nouvelles