18 décembre 2019 | International, Aérospatial

Study: Counter-Drone Systems Proliferate, Challenges Endure

Graham Warwick

Counter-drone systems continue to proliferate on the market, but technical and operational challenges in countering small unmanned aircraft systems (UAS) have not yet been fully surmounted, says a new report by the Center for the Study of the Drone at Bard College, New York.

The second edition of the Center's Counter-Drone Systems report lists 537 systems marketed by 227 companies in 38 countries, up from 235 in the first edition published in February 2018. This is despite removing 24 products from the database that no longer appear to be available.

Citing a March 2019 solicitation by the Pentagon's Defense Innovation Unit which said “it has proven difficult to identify and mitigate threats using currently fielded technologies,” the report says “dozens of background interviews with military and law enforcement personnel have validated this assertion.”

The challenges extend beyond the issue of effectiveness “and include complex questions around safety, practicality, policy and legality,” says the report's author, Arthur Holland Michel, founder and co-director of the Center.

When it comes to detection effectiveness, radar may struggle to pick up small UAS flying close to the ground, while cameras might confuse a drone with a bird or aircraft and be degraded by poor weather, low visibility and strong sunlight.

Electromagnetic interference may degrade the detection performance of radio-frequency sensors, with many potential sources of interference in urban areas. Radar, some RF systems and electro-optical/ infrared (EO/IR) sensors require line of sight to the drone, which can be problematic in urban areas.

Acoustic sensors and RF detection systems rely on a library of sounds and signals emitted by known drones, but given the rapid rate at which drones are emerging on the market “even libraries that are updated often will never cover 100% of the drones that might be operating,” the report says.

A major detection issue is the level of false negatives and false positives, the report said, noting that results of FAA testing of counter-drone systems showed distinguishing true positives from false positives in cluttered environments required a high level of manpower.

Distinguishing between legitimate and illegitimate drone use is another issue. Remote identification technology and the FAA's pending Remote ID rulemaking, “may go a long way to addressing this issue once implemented, but it will not be a total fix,” the report says.

There is a short time window available in which to respond to a drone threat and potential dangers posed to bystanders by some counter-drone interdiction techniques. Long-range systems such as lasers and high-power microwaves “could pose a serious threat to aircraft operated above the targeted drone.”

In terms of interdiction effectiveness, the report points to results of a 2017 counter-UAS event staged by the U.S. Joint Improvised Threat Defeat Organization that showed the drones were resilient against damage. “More recent C-AUS exercises indicate this problem remains an enduring one,” it says.

Jammers have no effect against drones operating autonomously without an active RF link; many signal jammers have an effective range of only a few hundred meters; spoofing systems may not be universally effective; and all kinetic systems may struggle against drones moving fast or in unpredictable patterns.

Drone technology, meanwhile, is not standing still, the report says, noting research underway on UAS that can operate in GPS-denied environments, negating jamming, and are capable of actively defeating jamming or spoofing attacks.

Consumer drones may soon be controllable via mobile LTE networks rather than an RF link, the report says. LTE drones could be operated at essentially unlimited range and “would be difficult or dangerous to interdict with jamming systems without interfering with ubiquitous cellular communications,” it says.

The proliferation of counter-UAS systems will inevitably accelerate the development of technology to render them less effective, the report concludes, by programming drones to maneuver in patterns that make them hard to detect by automatic target algorithms.

The report also highlights the challenges posed by drone swarms. “A swarm doesn't have to be dynamic or truly autonomous to achieve these effects: 10 individual drone operators flying 10 drones in unison may just be as difficult to defend against as a true autonomous swarm of 10 aircraft,” it says.

https://aviationweek.com/defense-space/study-counter-drone-systems-proliferate-challenges-endure

Sur le même sujet

  • US Army picks winners to build light and medium robotic combat vehicles

    10 janvier 2020 | International, Terrestre

    US Army picks winners to build light and medium robotic combat vehicles

    By: Jen Judson WASHINGTON — The U.S. Army has picked winners to build base platforms for its light- and medium-class robotic combat vehicles, according to a service statement released Jan. 9. The Army's Combat Capabilities Development Command and the service's Next Generation Combat Vehicle Cross-Functional Team “intends” — pending successful negotiations — to award a contract to QinetiQ North America to build four RCV-light prototypes and another contract to Textron to build four RCV-medium prototypes, the release stated. Through a rapid contracting mechanism, the National Advanced Mobility Consortium is coordinating the Army's awards to industry, and the service expects to be officially under contract with both companies by mid-February, according to the statement. While it was anticipated the Army would award up to two contracts per category at the end of the second quarter this fiscal year, it appears the awards have come earlier and are both limited to one company. The prototypes, according to the statement, will be used to “determine the feasibility of integrating unmanned vehicles into ground combat operations. The Light and Medium RCVs will be used to conduct a company-level experiment at the end of 2021." Results from that effort, as well as a platoon-level experiment in March 2020 and several virtual experiments, will help the Army decide in 2023 how it wants to proceed with robots on the battlefield. “Robots have the potential to revolutionize the way we conduct ground combat operations,” Brig. Gen. Ross Coffman, director of the NGCV CFT, said in the statement. “Whether that's giving increased fire power to a dismounted patrol, breaching an enemy fighting position, or providing [chemical, biological, radiological, nuclear and explosive] reconnaissance, we envision these vehicles providing commanders more time and space for decisions and reducing risk to soldiers.” Out of a large pool of whitepaper submissions, a Textron and Howe & Howe team, a team of QinetiQ North America and Pratt & Miller, HDT Global, and Oshkosh were each issued a request for prototype proposals in the RCV-light competition in October 2019. Three teams were picked to move on in the RCV-medium competition in November 2019: General Dynamics Land Systems, QinetiQ North America, and the Textron and Howe & Howe team. It is noteworthy that the companies selected to build prototypes in each category are the only two companies to have offerings in both the light and medium competitions, demonstrating potentially that they are the only companies with the flexibility to build in both categories. At the Association of the U.S. Army's annual conference in October, Textron and Howe & Howe dramatically unveiled their RCV Ripsaw M5, which is based on the latter's deep history of building unmanned ground vehicles, but adds technology like scalable armor and suspension as well as mobility options to cope with the challenges expected in the future fight. FLIR Systems is also part of the team, contributing its advanced sensors. “Bringing together Howe & Howe, Textron Systems and FLIR Systems really represents a dream team,” Textron CEO Lisa Atherton said in a statement released at the show. “We formed this team based on our shared focus to serve this customer with disruptive ideas and proven experience, and we are dedicated to meeting and exceeding their requirements through the RCV program.” The team told Defense News before the AUSA conference that it planned to submit a version of Ripsaw both for the light and medium variant of the Army's robotic combat vehicle. The Qinetiq and Pratt & Miller team submitted a variant of the Expeditionary Modular Autonomous Vehicle tailored toward the Army's RCV-light requirements. The offering combines Qinetiq's modular open-architecture control systems with Pratt & Miller's advanced mobility platform. The Army is also examining the utility of an RCV-heavy variant but is using robotic M113 armored personnel carriers as surrogate platforms for evaluations. That effort will focus on manned-unmanned teaming in a robotic wingman formation, with a manned Bradley Infantry Fighting Vehicle serving as the platform for the robot's operators. https://www.defensenews.com/land/2020/01/09/army-picks-winners-to-build-light-and-medium-robotic-combat-vehicles/

  • Lockheed Martin-Built AEHF-5 Protected Communications Satellite Now in Transfer Orbit

    8 août 2019 | International, Aérospatial

    Lockheed Martin-Built AEHF-5 Protected Communications Satellite Now in Transfer Orbit

    The Lockheed Martin (NYSE:LMT)-built AEHF-5 satellite is now responding to the squadron's commands as planned. The squadron began "flying" the satellite shortly after it separated from its United Launch Alliance Atlas V 551 rocket approximately 5 hours and 40 minutes after the rocket's successful 6:13 a.m. ET liftoff. AEHF-5 complete a geostationary ring of five satellites delivering global coverage for survivable, highly secure and protected communications for strategic command and tactical warfighters operating on ground, sea and air platforms. Besides U.S. forces, AEHF also serves international partners including Canada, the Netherlands and the United Kingdom. "This fifth satellite adds an additional layer of flexibility for critical strategic and tactical protected communications serving the warfighter. This added resilience to the existing constellation will help ensure warfighters can connect globally to communicate and transmit data at all times," said Mike Cacheiro, vice president for Protected Communications at Lockheed Martin Space. "In the weeks ahead, AEHF-5 will move towards its operational orbit, deploy all of its solar arrays and antennas, and turn on its powerful communications payload for a rigorous testing phase prior to hand over to the Air Force." AEHF-5, with its advanced Extended Data Rate (XDR) waveform technology, adds to the constellation's high-bandwidth network. One AEHF satellite provides greater total capacity than the entire legacy five-satellite Milstar communications constellation. "Individual data rates increase five-fold compared to Milstar, permitting transmission of tactical military communications, such as real-time video, battlefield maps and targeting data," said Cacheiro. "AEHF affords national leaders anti-jam, always-on connectivity during all levels of conflict and enables both strategic and tactical users to communicate globally across a high-speed network that delivers protected communications in any environment." Lockheed Martin designed, processed and manufactured all five on-orbit AEHF satellites at its advanced satellite manufacturing facility in Sunnyvale, California. The next AEHF satellite, AEHF-6, is currently in full production in Silicon Valley and is expected to launch in 2020. The AEHF team includes the U.S. Air Force Military Satellite Communications Systems Directorate at the Space and Missile Systems Center, Los Angeles Air Force Base, Calif. Lockheed Martin Space, Sunnyvale, Calif., is the AEHF prime contractor, space and ground segments provider as well as system integrator, with Northrop Grumman Aerospace Systems, Redondo Beach, Calif., as the payload provider. For additional information, visit our website: http://www.lockheedmartin.com/aehf

  • ‘Drone swarms’ are coming, and they are the future of wars in the air

    3 février 2021 | International, Aérospatial

    ‘Drone swarms’ are coming, and they are the future of wars in the air

    The question really is not if, but when and where drone swarms, which is the next evolution of robotic warfare, will be utilised in real-time operations. SAMEER JOSHI In early January 2018, Russian operators manning the extensive air defence network at Russia's Khmeimim airbase in western Syria spotted 13 incoming drones at low level. As the Russian air defence operators engaged these drones with EW & SHORAD systems, it was clear to the Russians that they were witnessing a new genre of a collaborative drone attack. The Russians shot down seven drones and jammed the remaining six in the nick of time. While the Islamic State and Afghan Taliban have used drones to deliver ad hoc explosive payloads, the failed attack on Khmeimim that evening was disturbing to close observers of drone warfare as the first recorded instance of a mass-drone attack by non-state actors in a combat operation. More drone attacks happened on the Russian facilities in Syria all through 2018, 2019 and 2020, with over 150 drones disabled by Russian AD in Syria till date. On 14 September 2019, 25 massed drones in two waves attacked the state-owned Saudi Aramco oil processing facilities at Abqaiq and Khurais. Analysis of satellite images of the Abqaiq facility before and after the attacks showed 19 individual strikes. What was noteworthy was that the Saudi air defence, including the potent MIM-104 Patriot and Crotale NGs failed to stop these waves of drones and cruise missiles. This demonstrates how a group of drones and cruise missiles coming from multiple directions can escape undetected for long and overwhelm conventional air defences. Switch to the unmanned While the US and Israel have extensively used drones in varied operational roles over the years, a glimpse of how warfare would evolve in future with use of unmanned air vehicles was truly highlighted by Turkey in Syria and Libya, and by Azerbaijan against Armenia in the Nagorno-Karabakh war in 2020. The coordinated usage of armed drones and loitering munition against tanks and air defence systems via electronic networks was very effective. This was especially showcased in the Azerbaijani strikes to knock down Armenian S-300 and SHORAD networks, as well as 200 plus military vehicles in the tactical battlefield area (TBA). This engagement is an order of magnitude higher from similar Russian use of unmanned aerial vehicles (UAVs) in Ukraine from 2014 onwards, where networked UAVs working with Russian ground based offensive weapons systems were able to eliminate major Ukrainian Army columns and supply depots. With the world taking note of these milestone events where smaller nations are exhibiting advanced warfighting capabilities, the military drone use will expand rapidly, dominated by rampant induction of surveillance and attack UAVs across the globe. Here Israel, Turkey, Russia and China are providing an effective and alternate industrial base to challenge the domination of the west in proliferation of advanced drones and allied technologies. However, the drone assaults on Khmeimim AFB and Saudi oil facilities, as well as coordinated use of drones in Ukraine, Syria, Libya and Nagorno-Karabakh display early flashes of evolution in future aerial warfare towards the concept of what is known as ‘drone swarming'. In particular, the mass drone attacks on Russian forces in Syria has highlighted the rampant danger that unmanned aircraft in a group increasingly pose, even in the hands of non-state actors. Such small drone teams, collaborating together, offer a game-changing capability for not only larger nations like the United States, Russia, China and Russia, but also small nations and non-state players, who will use the drone swarms in a highly asymmetric role. Very significantly, low cost unsophisticated drones working together and aiming for target saturation through numbers, impose a high cost penalty on the air defence elements. While defences may be able to fend off a handful of these improvised drones executing a very loosely coordinated attack, a near peer-state competitor can field a much advanced, denser, more nimble, adaptable, and networked force. Demystifying drone swarming So what exactly is a drone swarm? Swarm robotics is an approach to the coordination of multiple autonomous robots as a system which consists of a large number of mostly physical robots, controlled by minimal human intervention. These exhibit collective self organising (SO) behaviour through interaction and cohesion between robots, as well as interaction of robots with the environment. Swarming algorithms are empowered by biological studies of swarm behaviour of insects, fishes, birds and animals. Swarming R&D across the world is focussed on development of distributed artificial swarm intelligence capability, commodification of technology for lesser cost impact and increasing state of autonomy between the agents in a swarm. While massed drones in spectacular light shows are all controlled centrally, in a true swarm, each of the drones flies itself following onboard AI to maintain formation and avoid collisions with algorithms mimicking nature — there is no true leader and follower, with all agents in a swarm having their own ‘mind' able to undertake collective decision-making, adaptive formation flying, and self-healing. The benefit of such a swarm is that if one drone drops out — and a few appear to crash — the group can rearrange itself to continue undertaking the mission till the last UAV in air. Over time as militaries have incorporated greater communications, training, and organisation — they were able to fight in an increasingly sophisticated manner, leveraging more advanced doctrinal forms, with each evolution superior to the previous. Today militaries predominantly conduct manoeuvre warfare. Here swarming would be the next evolution in warfare — with the swarms exhibiting the decentralised nature of melee combat, along with the mobility of manoeuvre warfare. They have varied levels of autonomy and artificial intelligence. The autonomy extends military reach into the well defended battlespace, operating with greater range and persistence than manned systems; while artificial intelligence ensures dangerous and suicidal missions, thus allowing more daring concepts of operation (CONOPs). Both provide greater success in face on increased threat levels and rapid penetration of contested airspace. This switch to the unmanned is happening all across the world. And the most preferred route for delivery of a kinetic and non-kinetic payloads is via air. Traditionally, in airpower-heavy militaries like the United States, air operations have relied on increasingly capable multi-function manned aircraft to execute critical combat and non-combat missions over the decades. However, adversarial abilities to detect and engage these aircraft from longer ranges having improved are driving up the costs for vehicle design, operations and replacements. Thus an ability to send large numbers of small unmanned air systems (UASs) with coordinated and distributed capabilities, could provide militaries across the world with improved operational footprints at a much lower cost. These, embedded with manned elements, will effectively saturate adversary targets as a ‘system of systems'. Here Manned & Unmanned Teaming (MUM-T) acts as a force multiplier with autonomy and collaboration and the warfighter's role transforming to — commanding, rather than controlling a swarm. Once unleashed an armed, fully autonomous drone swarms (AFADS) with distributed AI will locate, identify, and attack targets without human intervention. While new technologies, and in particular AI and edge computing, will drive drone swarms — the key element is still going to be the swarming software. Towards this, all collective behaviour can ideally be clubbed under the term ‘swarm'. However, collaborative autonomy has ‘three' transformational echelons of behaviour — flocking, where a discernible number of UAVs execute abstract commands autonomously, but fall short of true swarm behaviour. UAVs attacking the Russians AFB in Syria and the Saudi oilfields utilised this echelon. Swarming, where a large numbers of UAVs aggregate entirely through swarming algorithms in real time and is the highest state of collaborative autonomy. Loyal Wingman utilise the collaborative autonomy either through emergent flocking or core swarming behaviour. These platforms will operate in MUM-T mode, flying at high speeds alongside fighter jets and carrying missiles, ISR and EW payloads. The Loyal Wingman will be expected to target ground installations and shoot down enemy aircraft, as well as survive against SAMs and electronic attacks in contested airspace. Military swarming in the US The United States is the world leader in swarm technology and has underway a host of swarming UAV and munition initiatives. It demonstrated the Perdix swarm in 2017. A trio of F/A-18 Super Hornet fighters release a total of 103 Perdix drones in air. The drones formed up at a preselected point and then headed out to perform four different missions. Three of the missions involved hovering over a target while the fourth mission involved forming a 100-meter-wide circle in the sky. The demo showed Perdix's collective distributed intelligence, adaptive formation flying, and self-healing abilities. There are a many uses for such a drone swarm. The drones could be released by fighters to provide reconnaissance for troops on the ground, hunting enemy forces and reporting their location. They could also jam enemy communications, form a wide-area flying communications network, or provide persistent surveillance of a particular area. They could be loaded with small explosive charges and attack individual enemy soldiers. In air-to-air combat, they could spoof enemy radars on aircraft, ground vehicles, and missiles by pretending to be much larger targets. The US Defense Advanced Research Projects Agency (DARPA) has also showcased the X-61A Gremlin air launched drones. The idea behind DARPA's Gremlins program is to turn cargo aircraft like the C-130 into motherships capable of launching and retrieving swarms of small drones. This would open up a world of possibilities to the military, allowing deployment of swarms of small, inexpensive, reusable drones with different sensors and payloads from legacy aircraft. The US Navy and Marine Corps' Low-Cost UAV Swarming Technology (LOCUST) program, which fires small UAVs from a tube-based launcher to conduct varied class of missions, is another swarm development underway. The US Army is also working on drone swarms and Reinforcement Learning (RL)-based AI algorithms for use in tactical battlefield area in multi-domain battle scenario, where swarms will be dynamically coupled and coordinated with heterogeneous mobile platforms to overmatch enemy capabilities. The US is also experimenting with collaborative smart munition delivery using the Cluster UAS Smart Munition for Missile Deployment where the payload can be launched and deployed from a GMLRS or ATACMS platform. The payload consists of multiple deployable smart UAVs capable of delivering small explosively formed penetrators (EFP) to designated targets. The USAF's Golden Horde — part of the Vanguard initiative to develop next generation offensive technologies — will network munitions like Small Diameter Bombs (SDB) together to operate cooperatively after being launched according to a set of predetermined rules and thus increase effectiveness. Further, the USAF's ‘Skyborg' initiative aims to design and deploy an artificially intelligent fleet of loyal wingman unmanned combat air vehicles (UCAV). The Kratos XQ-58A, the Sierra 5GAT and Boeing's ATS are undergoing development trials as part of Skyborg. Military swarming across the world On the other hand, the UK may have the world's first operational swarm drone unit by the middle of 2021 to perform tasks including suicide missions inside enemy lines and overwhelming adversary air defences. The Royal Air Force's №216 squadron has been tasked to test and deploy future drone swarm capability. The UK has also announced the Project Mosquito, which is a part of the RAF's Lightweight Affordable Novel Combat Aircraft (LANCA) unmanned loyal wingman program. This aims to fly a networked unmanned wingman by 2023. UK has also tested an autonomous swarm of drones each carrying a variant of Leonardo's BriteCloud expendable active decoy as an electronic warfare payload. Using the BriteClouds, which contain electronic warfare jammers, the drones were able to launch a mock non-kinetic attack on radars acting as surrogates for a notional enemy integrated air defence network Airbus in France has demonstrated for the first time collaborative remote carrier (RC) swarms and wingman technology towards the Future Combat Air System (FCAS)/Systeme de Combat Arien du Futur (SCAF) program. The Russians have had an extensive experience operating collaborative drones and countering the same in Ukraine and Syria. The last decade has upscaled UAV efforts in Russia and it aims to induct a large component of robotic vehicles in its military by 2025. It has an initiative called the ‘Flock 93' which aims to operationalise a high density swam in coordinated saturation strike missions. Originally proposed by the Zhukovsky Air Force Academy and private industry, the concept involves simultaneously launching more than a 100 drones, each armed with a 5.5 pound warhead. The Russians have also tested the S-70 Okhotnik UCAV in loyal wingman roles with its fighter jet fleet to penetrate adversary airspace. A lighter loyal wingman project with the designation Grom has also been unveiled by Russia in 2020. The Russians are aware of the lead in swarm autonomy which the US and China have, and are engaged in R&D and product development initiatives to close the gap in these niche areas in the coming decade. The Chinese are the closest in matching the high density drone swarm capability of the United States and in many ways are replicating the US R&D initiatives with development of AI empowered autonomous drone swarms. Recently The China Academy of Electronics and Information Technology (CAEIT) tested a 48 x tube launched drone swarm of CH-901 UAVs. CAEIT in the past has demonstrated a 200 unit drone military swarm in 2017. Chinese companies have also demonstrated impressive swarms of 1,000 plus drones using quad-copter-type drones for large public displays, which however are ground controlled and do not have distributed intelligence. The Chinese are undertaking integration of their existing UAV fleet in a robust collaborative autonomy role with the military. It also has a loyal wingman AVIC 601-S ‘Anjian' under development, which will operate with the fourth and fifth generation PLAAF fighters platforms. Whatever the goals and state of China's drone swarms developments are, its capability and potential threats are definitely real and rapidly evolving at a fast rate. Other nations developing swarm technology are Israel, where details on such initiatives are closely guarded. However, given the nature of Israeli operational UAV usage over the years, there are reasons to believe that it matured and has been deployed on its fleet of UAVs and loiter munitions, some of which have been proven by disabling Syrian AD networks. Interestingly, IAI offers a smartphone-based swarming command and control application for worldwide sales. Turkey, which has proven mature MALE UAV capabilities in Syria and Libya through locally made platforms like the TB-2, also has various swarm drone initiatives. Primary amongst them is the Kargu quadcopter which can be employed in kinetic attack roles in the tactical battlefield area. Turkey is vying to be a global UAV power in the days to come. However, the recent US sanctions on its defence industry is likely to curtail high technology induction from the West. Iran is another middle eastern nation which has used drones in groups operationally. Iran has embraced unmanned aerial vehicles (UAVs) as a major pillar of its military strategy. Iranian authorities use drones for two main purposes — surveillance and attack, where Iran has the ability to conduct missions over the horizon and in most weather conditions. These include drones with the ability to drop bombs or launch missiles and return to base and ‘kamikaze' drones that seek targets of opportunity. Iranian authorities have had more success with the latter as was visible in the Saudi oilfield strikes in 2019, where Iranian made drones and cruise missiles were used. While baseline collaborative autonomy in terms of vehicle flocking may be available, both Iran and Turkey have not shown true distributed intelligence ability amongst their UAV swarms. But their efforts are a clear indication of how the technology is maturing and proliferating. India's swarm drone odyssey In India, the Indian Air Force has been pioneering swarm drone research and development with its Meher Baba initiative since 2019. This is geared towards in depth humanitarian assistance and disaster relief (HADR) operations. On the other edge of the spectrum, the Indian Army showed off a mature offensive capability with a swarm of 75 autonomous drones with distributed intelligence and edge computing, destroying a variety of simulated targets with kamikaze attacks during India's Army Day parade in New Delhi in January 2021. In the demo, scout drones investigated the targets, then attack and mothership drones released payloads and explosive-laden kamikaze drones, which carried out the attacks. Western commentators noted several significant features of the Indian Army demonstration comparing it to the United States effort around drones, which often emphasises a large homogenous swarm. It was pointed out that India's original work, which showcased a heterogenous swarm effort for the first time in the world in public — as the probable way forward in this domain. An Indian Start-up company NewSpace Research & Technologies is associated with the Indian Army on its swarm development program. The Hindustan Aeronautics Limited (HAL) in India has unveiled the Air Launched Flexible Asset (ALFA -S) air launched swarming drone system as part of it next generation Combat Air Teaming System (CATS). This is a unique program which utilises a network of air launched remote carriers and swarming units to penetrate contested airspace. The USAF's Air Force Research Labs is collaborating on aspects of the ALFA-S with India. NewSpace Research & Technologies Pvt Ltd is also a partner in the HAL's ALFA initiative. Another component of HAL's CATS program is the Warrior loyal wingman asset. This is geared for air defence and offensive strike missions and will be employed in a MUM-T role with India's Tejas LCA and the upcoming AMCA fifth generation combat aircraft. What is noteworthy is that India is well driven by the power of indigenous research and the government's ‘Make in India' push to embrace disruptive technologies, which in some areas is at par with similar efforts happening across the world. HAL has unveiled the first 1:1 mock up of the Warrior in AeroIndia 2021 at Bengaluru. The future is now It is pertinent to note that while drone swarms may not be ready as an end state ‘product', proliferation of basic swarming technology is inevitable in the coming decade across the world. Here advances in drone swarming, which is the next evolution of robotic warfare are mostly classified, though governments have given glimpses of their progress over the years. The question is not if, but when and where drone swarms will be utilised as part of a mature concept of operations (ConOps). Swarming ConOps, a red herring for most nations, can only be matured with clinical and robust field trials utilising hundreds of heterogenous swarming units. It is this ‘scale and associated cost' borne by the end user which will determine a dynamic adoption, meaningful way ahead towards operationalisation and acceptable timelines of induction towards exploited usage of swarms as true agents of warfare. It is here that countries like the United States and China have a distinct advantage over the rest of the world towards deployment of swarm drone capabilities across the spectrum of missions, at a scale which will tilt the balance in their favour in the digitally contested airspace of tomorrow. Sameer Joshi is a retired Indian Air Force fighter pilot with experience on the MiG-21 and Mirage-2000 jets. Besides being a start-up entrepreneur, he has serious interests in aerospace & defence and military history. https://theprint.in/defence/drone-swarms-are-coming-and-they-are-the-future-of-wars-in-the-air/596842/

Toutes les nouvelles