9 décembre 2020 | International, Aérospatial, Naval, Terrestre, C4ISR, Sécurité

NATO needs a strategy for emerging and disruptive technologies

By: Lauren Speranza and Nicholas Nelson

The incoming Biden administration is expected to reassert ties with Europe, hoping to leverage America's allies and partners at NATO in the great power competition with China and Russia. As U.S. and European leaders set their collective agenda at the next NATO summit, a top priority should be establishing a NATO framework for emerging and disruptive technologies (EDT).

For the United States, it is important that the alliance adapt together to defend against algorithms and bots, as much as bullets and bombs. Europe shares this mindset but differs from the United States on key defense tech issues, such as regulation, data, and stakes in national champion companies. To avoid the dangerous transatlantic rifts of the last four years, Brussels and Washington must bridge that gap and forge an alliance approach to EDT.

NATO has acknowledged the need to harness the power of such technologies, but current efforts have produced innovation theater, as opposed to fundamental organizational change. NATO lags behind in critical areas such as 5G, hypersonics, artificial intelligence (AI), unmanned systems, and quantum science.

In the past, NATO has used frameworks to get member states to agree on priorities, dedicate resources, and empower authorities to act. Looking to the next NATO summit, transatlantic leaders should champion an EDT framework built around four practical pillars:

Establishing an organic assessment and coordination capacity at the strategic level. To fulfill its potential as the transatlantic coordinating tool on the security dimensions of EDT, the alliance needs an in-house capability to assess challenges driven by rapidly evolving technologies. It must examine the advantages and vulnerabilities of adversaries and competitors, as well as gaps in NATO's approach and capabilities. NATO must explore how EDT can be applied to tackle below-threshold threats, enhance defense planning, boost exercises, and support decision-making. Building on ongoing efforts, this should occur at the strategic level of the alliance, fusing civil and military perspectives and data to inform the development and introduction of cutting-edge EDT. It must also include a more robust mechanism for aligning capabilities and gaps across members, key partners, and the European Union. As defense budgets contract amidst the Covid-19 crisis, this approach will maximize return on investment and improve NATO's strategic edge.

Seeding the market by improving engagement with industry. A strategic assessment function will not be valuable unless industry leaders are engaged and incentivized. NATO needs to connect to the private sector early and often, clearly communicating its priorities and requirements while providing accessible opportunities for industry, including non-traditionals, to readily sell into the alliance. Too often national and international defense organizations do not provide discernable paths to revenue for these companies, artificially limiting their industrial bases. The long lead times for these projects are often unattractive or unfeasible, especially for small companies and start-ups where radical innovation takes place. To remedy this, the alliance should look to the U.S. Department of Defense, which has succeeded in attracting startups and non-traditionals to its ecosystem through rapid awards, proof-of-concept contracts, and matching venture capital funds that start-ups receive.

Enhancing standardization and interoperability by creating a system of systems. To meet the challenges of future warfare, the alliance must be able communicate and operate across militaries, capabilities, and domains. This requires more standardized, secure, and resilient platforms, systems, and infrastructure. NATO needs an EDT strategy for integration, not just innovation. Leading candidates for Biden's Pentagon team have emphasized this priority, supporting a CJADC2 concept – a “network of networks” to ensure reliable command and control. The alliance should leverage CJADC2 as a better framework for standardization and interoperability, paving the way for more complex joint operations. This requires a change in doctrine and a shift away from platforms to create a system of systems. Going forward, NATO needs this same approach to rapidly develop and deploy emerging defense and dual-use technologies for conventional and hybrid conflicts. This involves placing big, transformative bets on critical technologies, such as unmanned air and maritime systems, artificial intelligence (AI), and hypersonics.

Coordinate with the EU. NATO should better leverage its ability to assign capability and spending targets to encourage its members to innovate. For instance, to complement the 2 percent of GDP defense spending benchmark, NATO could mandate that allies invest a certain portion of that into emerging technologies. It should also rework the 2 percent metric to include civilian investment in dual-use technologies that may fall outside of traditional defense budgets. Where NATO lacks the capacity to enforce these standards, the European Union brings the legislative and budgetary authority to promote them. NATO and the EU should coordinate research and development, provide seed funding toward these targets, and reinforce them with legal tools where possible. NATO and the EU should also initiate a strategic dialogue to address fundamental issues of tech governance and data sharing.

The ability to employ emerging and disruptive technologies more effectively than competitors such as China and Russia will shape the global role of the United States and the transatlantic alliance in the coming decades. NATO has begun to talk the talk, but now it must walk the walk.

https://www.defensenews.com/opinion/2020/12/08/nato-needs-a-strategy-for-emerging-and-disruptive-technologies/

Sur le même sujet

  • Army’s Rapid Tech Office Set To Deliver Initial Hypersonics Capability In FY ’23, 50KW Laser Weapon In FY ’22

    24 juillet 2019 | International, Terrestre

    Army’s Rapid Tech Office Set To Deliver Initial Hypersonics Capability In FY ’23, 50KW Laser Weapon In FY ’22

    The Army's retooled rapid capabilities office has received approval to move ahead with its programs to deliver an initial combat capability for a hypersonic weapon in fiscal year 2023, with plans to announce a prototype award in August, and a Stryker-mounted... https://www.defensedaily.com/armys-rapid-tech-office-set-deliver-initial-hypersonics-capability-fy23-50kw-laser-weapon-fy22/army/

  • RTX's Pratt and Whitney expands operations with opening of new India Digital Capability Center

    15 février 2024 | International, Terrestre

    RTX's Pratt and Whitney expands operations with opening of new India Digital Capability Center

    Bengaluru, India, February 13, 2024 /PRNewswire/ -- Pratt & Whitney, an RTX (NYSE: RTX) business, announced the establishment of its new India Digital Capability Center (IDCC) in Bengaluru, India. The...

  • With billions planned in funding, the US Navy charts its unmanned future

    7 mai 2019 | International, Naval

    With billions planned in funding, the US Navy charts its unmanned future

    By: David B. Larter WASHINGTON — With the U.S. Navy poised to dive headlong into a future of robotic ships, the surface fleet is preparing to map out how best it can employ new unmanned sidekicks against potential adversaries Russia and China. At the Coronado, California, headquarters of the Navy's top surface warfare officer, the staff is cobbling together a plan stand up a development squadron to experiment with new technology for which the Navy has requested $2.7 billion for the next five years. “That's happening,” Vice Adm. Richard Brown, the head of naval surface forces in the Pacific, said in a recent interview. “We're going to have large [unmanned surface vessels], we're going to have medium-displacement USVs. I've got Sea Hunter running around. I've got no place to put those things. That was the impetus behind the development of the Surface Development Squadron.” The Sea Hunter is an unmanned vessel developed by the Defense Advanced Research Projects Agency. The surface Navy is on the precipice of launching into a very different future than the Aegis fleet of the late 1970s, the 1980s and the post-Cold War era. It's a future that eschews the ballooning costs of packing evermore sophisticated strike, air defense, counter-electronic warfare, counter-surface and counter-submarine technologies into massive manned combatants that cost billions of dollars. The Navy wants to prepare for a future where off-board aerial, surface and subsurface drones with sophisticated sensors search for, detect and engage enemy combatants, submarines and aircraft with humans in the loop who are based on manned combatants that attempt to stay undetected. The problem is the Navy doesn't know how to do that or how it would introduce those technologies into a fleet that has for the most part fought the same way since the Cold War. “We've got to figure out command and control,” Brown said. “We've got to figure out the man, train and equip aspects — there's got to be an administrative commander in charge of them, got to be a guy who equips those things, got to be a guy who oversees the training of the people who interact with and use the USVs.” That is a tall order, and Brown and his staff are relying on the Surface Development Squadron, or SURFDEVRON, to figure it out. “Let's say I have a ship going over the horizon and it has three USVs it's operating with. I've got to have a ship that's manned and trained to operate those USVs, and that ship has to be equipped with the comms architecture, and I've got to make sure the USVs are manned, trained and equipped," Brown said. “Right now I don't even know what that looks like. We are going to experiment the hell out of it in the SURFDEVRON.” The development squadron, which mirrors similar efforts in the submarine and aviation communities, will also be responsible for developing the three new stealth destroyers, which the Navy sees as highly capable platforms that can be used to develop new concepts. Alongside the Zumwalt-class destroyers, the Navy plans to place the Sea Hunter under the auspices of SURFDEVRON, Brown said. Moving fast The development squadron aims to speed up the pace of experimentation in the fleet and empower the squadron's officers to integrate new technologies into naval platforms. This is crucial to the Navy's forthcoming “distributed maritime operations” concept meant to counter rising threats, primarily from China, in the vast expanse of the western Pacific. “The surface force has been key in the [distributed maritime operations] discussion because there is an incredible amount of firepower located on our ships,” Brown said. “But once you buy into a distributed maritime operations concept, you've got to experiment, you've got to work it out. And what better place to do that than the SURFDEVRON? ... You need platforms.” Providing the squadron with ships, such as the Zumwalt, the destroyer Michael Monsoor and the Sea Hunter, will allow ideas to flourish rather than die on the vine. “Someone has an idea for this new laser, it will take you two years to get the approval process,” Brown said. “Look at the laser we are trying to put on [the amphibious transport dock] Portland: We've been talking about that since I've been in this job. It's still not on there. “[With SURFDEVRON], I think we're talking about weeks to months — it's this idea of rapid acceleration of experimentation.” Too fast? The speed at which the Navy moved on efforts for unmanned surface vessels, as reflected in this year's budget proposal, raised questions about whether the technology pursued by the Navy is mature enough to be reliable in a fight. But with prototypes such as Sea Hunter already performing complicated tasks at sea, the state of technology is less a barrier that previous thought, said Bryan Clark, an analyst with the Center for Strategic and Budgetary Assessments and a retired submarine officer. The Navy's goals for the first large USVs are limited, Clark said, and developing the platforms makes sense. “The state of technology, especially for unmanned surface vessels, I don't think that's the issue,” he said. “The technology is mature enough to support what the Navy wants to do with these vehicles, especially the initial set of missions because they are going to be done in concert with manned platforms. So you'll have the ability to have people manage them as opposed to being independent steamers.” The way the Navy pursues USVs makes sense as well, Clark said. The service wants to buy eight large USVs, each about 2,000 tons with the ability to autonomously navigate waters. The drones would be equipped with enough space, power and cooling to host a variety of different systems. The service also plans to develop a smaller, medium-sized USV. “Is this 2,000-ton large surface vessel the right vessel?” Clark asked. “And I think given the fact that it's more or less a hull or a truck — that's how the Navy is looking at it — there's less risk of buyer's remorse to say: ‘Well, I wish I'd designed it very differently.' Because if it's a truck and it's got at least the space and weight [and] cooling you need, you can pretty much cover any [concept of operations] you might envision for it.” Another question is whether the Navy can develop a reliable communications network as a way to link to distant unmanned vessels. One benefit of distributing sensors is that detectable electronic signals are a considerable distance from the manned platform, meaning that platform has the advantage of active radars but without exposing itself to adversaries armed with signal-sniffing equipment. In a distributed construct, the drones spread out across an area while the manned ship passively receives the data at a distance. But it's a challenge to accomplish that in environments where an adversary such as China or Russia actively jams communications signals. However, it's a challenge the Navy must address, said Bob Work, the former deputy secretary of defense who championed unmanned technologies under the Obama administration. “This is like carrier aviation in the interwar period,” Work said. “This is an integration problem with systems that ultimately are going to change the way the Navy fights and considers combat power. The first thing is to get things into the fleet to test them and say: ‘How do these things work together?' ” Work said the Navy's concept of operations currently under development doesn't need to be the final word, but he added it's imperative the Navy begin experimenting. “It's very rudimentary right now — the medium-displacement surface vessels are the sensor guys, and the large surface vessels are more missile magazines. Hell, I can see all kinds of permutations, but for the first time we actually have platforms that are in the program that are being procured and will form the basis for fleet problems on human-machine surface action groups, human-machine undersea combat groups. I'm very excited about the way this is going," he said. “Are these the final ones? No, they'll change. But first the Navy had to commit to unmanned surface vehicles. People say, ‘Well, they'll never be able to talk to each other,' or that ‘under admiralty law, unmanned vessels are considered hazards to navigation.' And I'm just thinking: ‘Will you just stop?' Start thinking about how you work through those problems.” https://www.defensenews.com/digital-show-dailies/navy-league/2019/05/06/with-billions-planned-in-funding-the-us-navy-charts-its-unmanned-future/

Toutes les nouvelles