30 janvier 2019 | International, Naval

More Missile Defense Ships, New Ground Deployments

By

WASHINGTON: A top Pentagon official on Tuesday said major upgrades being made to dozens of Navy destroyers to give them new missile defense capabilities will continue, even as Navy leadership bristles at having so many ships tied up hunting for missile launches.

The comments by James Anderson, assistant Defense secretary for strategy, plans and capabilities, came on the same day that Director of National Intelligence Dan Coats testified before Congress that US intelligence agencies assess North Korea is unlikely to completely give up its nuclear weapons and ballistic missile programs in any potential deal with Washington.

“The Navy does have this mission of ballistic missile defense,” Anderson said during a talk at the Brookings Institution. “It is one of their core missions and it will remain so.” The Navy currently has 38 Arleigh Burke-class Aegis destroyers in the fleet with missile defense capabilities, he noted, and has plans to convert “all Aegis destroyers to fully missile defense capable” status, meaning 60 ships will be able to perform the missile defense mission by 2023.

Just the day before Anderson's remarks, Chief of Naval Operations Adm. John Richardson complained again that he has ships sailing in “small boxes” protecting assets on land, when they should be out performing other missions.

“We've got exquisite capability, but we've had ships protecting some pretty static assets on land for a decade,” Richardson said. “If that [stationary] asset is going to be a long-term protected asset, then let's build something on land and protect that and liberate these ships from this mission.”

Full article: https://breakingdefense.com/2019/01/more-missile-defense-ships-new-ground-deployments

Sur le même sujet

  • Lockheed Awarded $1.9B For One-Year F-35 Sustainment

    7 janvier 2020 | International, Aérospatial

    Lockheed Awarded $1.9B For One-Year F-35 Sustainment

    Steve Trimble The F-35 Joint Program Office awarded Lockheed Martin a $1.9 billion contract on Jan. 6 to maintain the global Lightning II fleet, support training and expand capacity for producing spares and repairing components. The annual award to the F-35's prime contractor follows a $1.4 billion contract in 2018 and $1.15 billion contract in 2019 for global sustainment services. The amount fluctuates along with investments in repair depots and fleet growth. “In 2020, we will continue to optimize and advance the sustainment system. We are confident F-35 sustainment costs will be equal to or less than legacy jets,” says Greg Ulmer, Lockheed's vice president and general manager for the F-35 program. Lockheed has committed to lowering the cost per flight hour of the F-35A to $25,000 by 2025. The U.S. Air Force paid about $44,000 per flight hour to operate the aircraft in 2018. Some defense officials, including the Pentagon's former head of cost evaluation, have said Lockheed's cost target is unrealistic. But others, including the commander of the Air Force's Life Cycle Management Center, do not rule out the possibility. Lockheed's announcement calls the award an “annualized” contract. The company had proposed converting the sustainment program into a five-year, fixed-price contract, but it appears the government rejected the proposal. Lockheed has delivered 490 F-35s since 2009, including 134 in 2019, with the fleet surpassing more than 240,000 cumulative flight hours. https://aviationweek.com/defense-space/lockheed-awarded-19b-one-year-f-35-sustainment

  • International Hypersonic Strike Weapons Projects Accelerate

    17 juin 2020 | International, Aérospatial

    International Hypersonic Strike Weapons Projects Accelerate

    James Bosbotinis June 15, 2020 There is growing international interest in the development of offensive hypersonic weapon systems, particularly following the deployment by Russia and China of nascent hypersonic strike capabilities. France, India, Japan and the UK all are seeking to develop a hypersonic strike capability too. Beyond Russia's Avangard hypersonic glide vehicle (HGV) and Kinzhal air-launched ballistic missile (ALBM), and China's DF-17 HGV, both nations are developing additional hypersonic weapon systems. Russia, for example, is working on the Zircon hypersonic cruise missile (HCM) and related technologies, while China is developing an expansive technological base and infrastructure for the development and production of hypersonic systems for military, commercial and space applications. Given the technical challenges and cost inherent in developing hypersonic weapons, particularly in areas such as propulsion, airframe design, guidance and thermal management, what roles will such weapons undertake? The speed, maneuverability and flight characteristics of hypersonic weapons makes them challenging to detect, track and intercept, reducing the warning time available and window for interception. Hypersonic weapons thus provide advantages for the prosecution of time-critical targets, mobile or relocatable targets or in the face of adversary missile defense capabilities. Maritime strike is also a key projected role for hypersonic missiles under development or being deployed by Russia, China and Japan. In the conventional precision-strike role, hypersonic weapons will require a robust set of supporting intelligence, surveillance, target acquisition and reconnaissance capabilities, in particular for the prosecution of mobile/relocatable targets. France is developing its fourth-generation air-launched nuclear missile, the ASN4G, which will be scramjet-powered and is due to enter service in the mid-2030s, replacing the current ASMP-A. It is also developing an HGV demonstrator, the “Vehicule Manoeuvrant Experimental,” or V-MaX, which is due to make its first flight before the end of 2021. India is similarly pursuing two hypersonic weapon projects, the BrahMos-2, developed by the BrahMos joint venture between India and Russia, and another HCM project. The BrahMos-2 is intended to be an HCM capable of speeds of Mach 5-7; HCM development is supported by the scramjet-powered Hypersonic Technology Demonstrator Vehicle (HSTDV). An attempted test flight in June 2019 failed due to a technical problem with the Agni-1, serving as the launch platform for the HSTDV. Japan has outlined plans for two hypersonic weapon systems; the Hyper-Velocity Gliding Projectile (HVGP) and a Hypersonic Cruising Missile. Japan outlined in its Midterm Defense Program (fiscal 2019-23) plans to strengthen the defense of “remote islands in the southwest region,” including through the establishment of HVGP units. The HVGP is intended to be a tactical HGV, capable of delivering a penetrating warhead for targeting, for example, aircraft carriers, or a “high-density EFP” (explosively formed penetrator) warhead for “area suppression.” An initial variant will be deployed in the 2024-28 time frame with an improved variant following in the 2030s. The Japanese HCM will be a scramjet-powered missile, armed with the same warheads as the HVGP, and intended to provide a standoff capability to counter “ships and landing forces attempting to invade Japan.” The HCM will be deployed in the late 2020s/early 2030s, with an improved variant following later in the 2030s. The UK is exploring options for the development of a hypersonic strike capability, including potentially as part of the joint Future Cruise/Anti-Ship Weapon project with France to replace the Storm Shadow/SCALP standoff cruise missile and the anti-ship Exocet and Harpoon from 2030. In July 2019, Air Vice Marshal Simon Rochelle, then chief of staff capability, announced that the UK sought to deploy an affordable, air-launched hypersonic weapon by 2023. Moreover, as Aviation Week disclosed, a joint U.S.-UK study, Thresher (Tactical High-Speed, Responsive and Highly Efficient Round), is underway between the U.S. Air Force Research Laboratory and UK Defence Science and Technology Laboratory (AW&ST April 6-19, p. 14). It is due to be completed in 2022 or 2023. With the notable exception of the UK's intention to rapidly acquire a hypersonic missile by 2023, the majority of known programs are not likely to deliver weapon systems until the second half of the 2020s or 2030s. This period is also likely to see a significant expansion in Russian and Chinese hypersonic strike capabilities. Russia possesses a nascent hypersonic strike capability following the initial deployment in December 2017 of the Kinzhal ALBM and in December 2019 of the Avangard HGV system. The Kinzhal and Avangard were both announced by President Vladimir Putin in his state of the nation address on March 1, 2018, and reflect Russia's long-term efforts to develop hypersonic weapons, particularly as a response to U.S. missile defense efforts. Although seeming to catch the U.S. public by surprise, the development of the Avangard can be traced back to the Albatross project started in the late 1980s as part of the Soviet response to the U.S. Strategic Defense Initiative. NPO Mashinostroyeniya performed several tests of the Yu-70 prototype in 1990-92, until the program was put on hiatus amid the dissolution of the Soviet Union, says Markus Schiller, founder of ST Analytics and a Germany-based consultant on hypersonic technology. The Yu-70 project was revived shortly after Putin assumed power in 2000, leading to a series of test flights in 2001-11. The Avangard HGV is based on an improved version known as the Yu-71, which performed a series of tests in 2013-18, Schiller says. The development of hypersonic weapons also reflects Russia's interest in developing a robust conventional long-range precision-strike capability as part of its wider military modernization efforts. It is developing and deploying both nuclear and conventionally armed hypersonic weapons, including dual-capable systems, to undertake tactical and strategic roles. In addition to the Avangard and Kinzhal, at least three more development programs are underway: the Zircon, GZUR (deriving from the Russian for “hypersonic guided missile”) and an air-launched weapon to arm the Sukhoi Su-57 Felon. The Avangard is an ICBM-launched HGV, initially equipping the UR-100N, a modernized version of the SS-19, and might equip the developmental SS-X-29 Sarmat (Satan 2). The Avangard is reportedly capable of attaining speeds in excess of Mach 20, can maneuver laterally and in altitude, and can travel intercontinental distances. Although principally intended as a nuclear system, the Avangard can reportedly also be used in the conventional strike role. The Kinzhal is a dual-capable, air-launched derivative of the Iskander-M tactical ballistic missile, with a range of 2,000 km (1,250 mi.) and a speed of Mach 10. It is being deployed with a modified variant of the Mikoyan MiG-31, the MiG-31K, and may be integrated with other aircraft, including reportedly the Tupolev Tu-22M3 Backfire. Russia is also developing a scramjet-powered HCM, the 3K22 Zircon, which will be capable of speeds up to Mach 9, have a range in excess of 1,000 km, and operate in the land attack and anti-ship roles. The Zircon will be compatible with existing launchers capable of launching the Oniks supersonic cruise missile, such as the UKSK vertical launch system. It is due to enter service in 2022. A Zircon was successfully test-fired from the new frigate Admiral Gorshkov in February 2020. Following the collapse of the Intermediate-Range Nuclear Forces Treaty, Putin announced the development of a ground-launched Zircon variant. The GZUR is reported to be an air-launched missile capable of a speed of Mach 6, a range of 1,500 km and sized to fit within the bomb bay of a Tupolev Tu-95MS Bear. It may enter service in the early 2020s. In this regard, Russian media reports in May noted the testing of a new hypersonic missile from a Tu-22M3 that is intended to arm the modernized Tu-22M3M. Another hypersonic missile is reported to be under development and intended to equip the Su-57. China has thus far only confirmed one hypersonic weapon, the DF-17. Its pursuit of hypersonic weapons is driven by the requirements to counter U.S. missile defenses and acquire a robust precision-strike capability as part of its wider efforts to develop “world-class” armed forces. The DF-17 is a conventionally armed medium-range ballistic missile (potentially derived from the DF-16), equipped with an HGV, with a range of 1,800-2,500 km. When it debuted at China's National Day Parade on Oct. 1, it was announced as being intended for “precision strikes against medium- and close-range targets.” In testimony before the U.S. House Armed Services Committee this March, U.S. Air Force Gen. Terrence O'Shaughnessy, commander of U.S. Northern Command and the North American Aerospace Defense Command, stated that China is testing an intercontinental HGV. It is likely that the DF-41, China's new ICBM that also debuted at the October 2019 National Day Parade, would be armed with the new HGV. O'Shaughnessy's testimony appeared to echo public statements in 2014 by Lee Fuell, who was then in Air Force intelligence and linked China's HGV development program to plans for that country's nuclear arsenal. China is developing the technologies required for HCMs. For example, in May 2018, a scramjet test vehicle, the Lingyun-1, was publicly exhibited for the first time in Beijing, while in August 2018 China successfully tested a hypersonic waverider test vehicle, the XingKong-2, which attained a speed of Mach 6. Notably, in April 2019, Xiamen University successfully flew the Jiageng-1 test vehicle, which employed a “double waverider” configuration. Interest in developing an air-launched hypersonic strike capability has also been noted. China is also believed to be developing two ALBMs, which would provide China with a near-term air-launched hypersonic strike capability. The new CJ-100, which also debuted at China's 2019 National Day Parade, warrants mention. Aside from the statement that the weapon offers “long range, high precision and quick responsiveness,” no technical information on the CJ-100 has been officially released. The South China Morning Post, citing the Chinese publication Naval and Merchant Ships, suggests the CJ-100 has a cruising speed of Mach 4 and top speed of Mach 4.5, adding that it employs a two-stage configuration utilizing a rocket booster and ramjets. Given China's progress in developing hypersonic technologies, the possibility that the CJ-100 is a hypersonic cruise missile cannot be dismissed. In a further indication of China's progress in the development of hypersonic technologies, in January 2019 it was reported that an indigenous Turbine-Based Combined-Cycle engine had completed its design and development phase and was proceeding to the aircraft integration test phase. https://aviationweek.com/defense-space/missile-defense-weapons/international-hypersonic-strike-weapons-projects-accelerate

  • SES wants fleet of identical, interchangeable satellites

    11 septembre 2018 | International, C4ISR

    SES wants fleet of identical, interchangeable satellites

    by Debra Werner PARIS — Fleet operator SES plans to revolutionize satellite purchasing and operations. Instead of buying individual satellites tailored for a specific job at a precise orbital location as it has for decades, the Luxembourg-based company is seeking homogenous satellites with digitally processed payloads it can reconfigure to perform any job in geostationary or medium Earth orbit. “We will only buy one type of satellite going forward,” Steve Collar, SES president and chief executive, told reporters Sept. 10 at the World Satellite Business Week conference here. “Exactly the same spacecraft can be operated at 19.2 degrees, 23.5 degrees, 108 degrees East, it doesn't matter. We can put them wherever we want.” If the SES board of directors approves the plan, SES will solicit proposals by the end of the month and begin purchasing in early 2019 the new 2.5 to 2.9-ton spacecraft offering approximately 12.5 kilowatts of power, said Martin Halliwell, SES chief technology officer, who leads the initiative. Prior to announcing its plan, SES worked with 11 potential satellite vendors and selected three for continued cooperation. Company executives declined to name the vendors. SES is embarking on this campaign because it expects satellites to be an integral part of evolving global communications networks. To perform that role, however, the industry will need to expand satellite production dramatically, Collar said. “If we get the savings we think we will, we will be able to significantly scale our network without spending more or more modestly scale our network and spend less,” Collar said. “We haven't yet decided where that comes out.” To further improve economies of scale, SES is encouraging manufacturers to share the new spacecraft design with other customers. “Let's make the party as big as possible,” Halliwell said. Collar added, “We think it will improve the economics of the whole industry.” SES plans to stack three of its future satellites, which don't yet have a brand name, on rockets. The rockets could then drop them off in medium Earth or geostationary transfer orbit, as needed, Halliwell said. SES operates 56 satellites in geostationary orbit and 16 O3B satellites in medium Earth orbit. The firm plans to launch four more O3B satellites in 2019. SES also is investing more than 1 billion euros ($1.16 billion) in O3B mPower, a seven-satellite constellation built by Boeing for internet and data connectivity that is slated to begin launching in 2021. SES's plans to fly the new reprogrammable satellites comes after mPower, Collar said. https://spacenews.com/ses-seeks-interchangeable-satellites

Toutes les nouvelles