30 mars 2021 | International, Aérospatial

German government buys stake in defense supplier Hensoldt

The German government is buying a minority stake in defense supplier Hensoldt, a company that derives from European aircraft manufacturer Airbus’ former defense and security electronics division.

https://www.defensenews.com/industry/2021/03/29/german-government-buys-stake-in-defense-supplier-hensoldt/

Sur le même sujet

  • The tiny tech lab that put AI on a spyplane has another secret project

    15 février 2021 | International, Aérospatial

    The tiny tech lab that put AI on a spyplane has another secret project

    By: Valerie Insinna WASHINGTON — It started as a dare. When Will Roper, then the Air Force's top acquisition official, visited Beale Air Force Base in California last fall, he issued a challenge to the U-2 Federal Laboratory, a five-person organization founded in October 2019. The team was established to create advanced technologies for the venerable Lockheed Martin U-2 spyplane, and Roper wanted to push the team further. “He walked into the laboratory and held his finger out and pointed directly at me,” recalled Maj. Ray Tierney, the U-2 pilot who founded and now leads the lab. “He said, ‘Ray, I got a challenge.' We didn't even say hello.” Roper, a string theorist turned reluctant government bureaucrat who was known for his disruptive style and seemingly endless references to science-fiction, wanted the team to update the U-2′s software during a flight. It was a feat the U.S. military had never accomplished, but to Tierney's exasperation, Roper wanted only to know how long it would take for the lab to pull off. The answer, it turns out, was two days and 22 hours. A month later, in mid-November, Roper laid out a second challenge: Create an AI copilot for the U-2, a collection of algorithms that would be able to learn and adapt in a way totally unlike the mindlessness of an autopilot that strictly follows a preplanned route. That task took a month, when an AI entity called Artuμ (pronounced Artoo, as in R2-D2 of Star Wars fame) was given control of the U-2′s sensors and conveyed information about the location of adversary missile launchers to the human pilot during a live training flight on Dec. 15. Now, the U-2 Federal Laboratory is at work again on another undisclosed challenge. Tierney and Roper declined to elaborate on the task in interviews with Defense News. But Roper acknowledged, more broadly, that a future where AI copilots regularly fly with human operators was close at hand. “Artuμ has a really good chance of making it into operations by maybe the summer of this year,” Roper told Defense News before his Jan. 20 departure from the service. “I'm working with the team on how aggressive is the Goldilocks of being aggressive enough? The goal is fairly achievable, but still requires a lot of stress and effort.” In order to ready Artuμ for day-to-day operations, the AI entity will be tested in potentially millions of virtual training missions — including ones where it faces off against itself. The Air Force must also figure out how to certify it so that it can be used outside of a test environment, Roper said. “The first time we fly an AI in a real operation or real world mission — that's the next big flag to plant in the ground,” Roper said. “And my goal before I leave is to provide the path, the technical objectives, the program approach that's necessary to get to that flag and milestone.” Meanwhile, the team has its own less formal, longer-term challenge: How do you prove to a giant organization like the Air Force, one that is full of bureaucracy and thorough reviews, that a small team of five people can quickly create the innovation the service needs? No regulations, no rules During a Dec. 22 interview, Tierney made it clear that he had little interest in discussing what the U-2 Federal Lab is currently working on. What he wanted to promote, he said, was the concept of how federal laboratories could act as innovation pressure chambers for the military — a place where operators, scientists and acquisition personnel would have the freedom to create without being hamstrung by red tape. For those immersed in military technology, focusing on the promise of federal laboratories can seem like a bit of a letdown, if not outright academic, especially when compared to a discussion about the future of artificial intelligence. The U.S. government is rife with organizations — often named after tired Star Wars references that would make even the most enthusiastic fanboy cringe — created in the name of fostering innovation and rapidly developing new technologies. Many of those advances never make it over the “valley of death” between when a technology is first designed and when it is finally mature enough to go into production. Ultimately, that's the problem the U-2 Federal Lab was created to solve. As a federally accredited laboratory, the team is empowered to create a technology, test it directly with users, mature it over time, and graduate it into the normal acquisition process at Milestone B, Tierney said. At that stage, the product is ready to be treated as a program of record going through the engineering and manufacturing development process, which directly precedes full-rate production. “We're basically front loading all the work so that when we hand it to the acquisition system, there's no work left to do,” Tierney said. The lab essentially functions as a “blue ocean,” as an uncontested market that does not normally exist in the acquisition system, he explained. “There's no regulations; there's no rules.” While that might sound similar to organizations the Air Force has started to harness emerging technologies, such as its Kessel Run software development factory, Tierney bristled at the comparison. “We're basically developing on the weapon system, and then working our way back through the lines of production, as opposed to a lot of these organizations like Kessel Run, which is developing it on servers and server environments,” he said. That distinction is critical when it comes to bringing modern software technologies to an aging platform like the U-2, an aircraft that took its first flight in 1955 and is so idiosyncratic that high speed muscle cars are needed to chase the spyplane and provide situational awareness as it lands. Because the team works only with the U-2, they understand the precise limitations of the weapon system, what its decades-old computers are capable of handling, and how to get the most out of the remaining space and power inside the airplane. Besides Tierney, there are only four other members of the U-2 Federal Lab: a National Guardsman with more than a decade of experience working for IBM, and three civilians with PhDs in machine learning, experimental astrophysics and applied mathematics. (The Air Force declined to provide the names of the other employees from the lab.) As the lone member of the team with experience flying the U-2, Tierney provides perspective on how the aircraft is used operationally and what types of technologies rank high on pilots' wish lists. But what most often drives the team are the projects that can make the biggest impact — not just for the U-2, but across the whole Defense Department. Making it work One of those projects was an effort to use Kubernetes, a containerized system that allows users to automate the deployment and management of software applications, onboard a U-2. The technology was originally created by Google and is currently maintained by the Cloud Native Computing Foundation. “Essentially, what it does is it federates or distributes processing between a bunch of different computers. So you can take five computers in your house and basically mush them all together into one more powerful computer,” Tierney said. The idea generated some resistance from other members of the lab, who questioned the usefulness of deploying Kubernetes to the U-2′s simple computing system. “They said, ‘Kubernetes is useless to us. It's a lot of extra processing overhead. We don't have enough containers. We have one processing board, [so] what are you distributing against? You got one computer,'” Tierney said. But a successful demonstration, held in September, proved that it was possible for even a 1950s-era aircraft to run Kubernetes, opening the door for the Defense Department to think about how it could be used to give legacy platforms more computing power. It also paved the way for the laboratory to do something the Air Force had long been aiming to accomplish: update an aircraft's code while it was in flight. “We wanted to show that a team of five in two days could do what the Department of Defense has been unable to do in its history,” Tierney said. “Nobody helped us with this; there was no big company that rolled in. We didn't outsource any work, it was literally and organically done by a team of five. Could you imagine if we grew the lab by a factor of two or three or four, what that would look like?” The lab has also created a government-owned open software architecture for the U-2, a task that took about three months and involved no additional funding. Once completed, the team was able to integrate advanced machine learning algorithms developed by Sandia National Laboratories in less than 30 minutes. “That's my litmus test for open architecture,” Tierney said. “Go to any provider that says I have open architecture, and just ask them two questions. How long is it going to take you to integrate your service? And how much is it going to cost? And if the answer isn't minutes and free, it's not quite as open as what people want.” The U-2 Federal Lab hopes to export the open architecture system to other military aircraft and is already in talks with several Air Force and Navy program offices on potential demonstrations. Could the Air Force create other federal laboratories to create specialized tech for other aircraft? The U-2 lab was designed from the outset to be franchisable, but Tierney acknowledged that much of the success of future organizations will rest in the composition of the team and the level of expertise of its members. “Can it scale? Absolutely. How does it scale is another question,” Tierney said. “Do you have one of these for every weapon system? Do you have just a couple sprinkled throughout the government? Does it proliferate en masse? Those are all questions that I think, largely can be explored.” For now, it's unclear whether the Air Force will adopt this framework more widely. The accomplishments of the U-2 Federal Laboratory have been lauded by Air Force leaders such as Chief of Staff Gen. Charles “CQ” Brown, who in December wrote on Twitter that the group “continue[s] to push the seemingly impossible.” However, it remains to be seen whether the Biden administration will give the lab the champion it found in Roper, and continued pressure on the defense budget — and to retire older aircraft like the U-2 — could present greater adversity for the lab. But as for the other challenge, the one Tierney and Roper didn't want to discuss, Tierney offered only a wink as to what comes next: “What I can say is that the future is going to be an interesting one.” https://www.defensenews.com/air/2021/02/11/the-tiny-tech-lab-that-put-ai-on-a-spyplane-has-another-secret-project/

  • Contract Awards by US Department of Defense - May 3, 2019

    6 mai 2019 | International, Aérospatial, Naval, Terrestre, C4ISR, Sécurité, Autre défense

    Contract Awards by US Department of Defense - May 3, 2019

    U.S. SPECIAL OPERATIONS COMMAND Insitu Inc., Bingen, Washington, was awarded a maximum $23,000,000 modification (P00019) for an existing non-competitive, single award, indefinite-delivery/indefinite-quantity contract (H92222-16-D-0031) for Mid-Endurance Unmanned Aircraft Systems (MEUAS) 1.5B intelligence, surveillance, and reconnaissance (ISR) services. The $23,000,000 increase to a ceiling of $273,000,000 prevents gaps in ISR services until all task orders are transitioned to the current competitive MEUAS III contracts. Fiscal 2019 operations and maintenance funds in the amount of $7,354,530 are available for obligation at the task order level. U.S. Special Operations Command Headquarters, Tampa, Florida, is the contracting activity. NAVY Valiant Global Defense Services Inc., San Diego, California, is awarded $15,913,990 for firm-fixed-price task order M67854-19-F-7884 under previously award contract M67854-19-D-7876 to provide support services for the Marine Air Ground Task Force (MAGTF) Training Support Service (MTSS), MAGTF Staff Training Program (MSTP). Services will include pre-deployment training programs to Marine Corps operating forces, as well as command, control, communications, and computer mobile training team training at the functional and executive level to commanders and battle staffs, and technical training for operators and information managers. Work will be performed in Quantico, Virginia, and is expected to be completed by November 2020. Fiscal 2019 operations and maintenance (Marine Corps) funds in the amount of $5,380,849 will be obligated at the time of award and these funds will expire at the end of the current fiscal year. This order was competitively awarded under a multiple award task order contract. The Marine Corps Systems Command, Quantico, Virginia, is the contract activity. Lockheed Martin Corp., Fort Worth, Texas, is awarded $7,514,515 for modification P00015 to a previously awarded fixed-price-incentive-fee contract (N0001918C1048) to establish organic depot component repair capabilities for the F-35 Lightning II Air Interceptor System in support of the Air Force, Marine Corps and Navy. Work will be performed in Rochester, Kent, United Kingdom (81.6 percent); and Fort Worth, Texas (18.4 percent), and is expected to be completed in March 2023. Fiscal 2017 aircraft procurement (Air Force); and fiscal 2019 aircraft procurement (Navy, Marine Corp. and Air Force) funds in the amount of $7,514,515 are being obligated at time of award, $3,757,257 of which will expire at the end of the current fiscal year. This contract combines purchases for the Air Force ($3,757,257; 50 percent); Marine Corps ($1,878,629; 25 percent); and Navy ($1,878,629; 25 percent). The Naval Air Systems Command, Patuxent River, Maryland, is the contracting activity. ARMY A4 Construction Company Inc.,* Sandy, Utah, was awarded a $12,309,817 firm-fixed-price contract for construction of a Special Operation Forces Human Performance Training Center. Bids were solicited via the internet with eight received. Work will be performed in Fort Carson, Colorado, with an estimated completion date of May 6, 2021. Fiscal 2019 military construction funds in the amount of $12,309,817 were obligated at the time of the award. U.S. Army Corps of Engineers, Omaha, Nebraska, is the contracting activity (W9128F-19-C-0018). DEFENSE LOGISTICS AGENCY Federal Prison Industries, Inc.,** doing business as UNICOR, Washington, District of Columbia, has been awarded a maximum $9,558,000 firm-fixed-price, indefinite-delivery/indefinite-quantity contract for parkas. This is a one-year base contract with two one-year option periods. Locations of performance are Washington, District of Columbia; and Kentucky, with a May 2, 2020, performance completion date. Using military service is Navy. Type of appropriation is fiscal 2019 through 2020 defense working capital funds. The contracting activity is the Defense Logistics Agency Troop Support, Philadelphia, Pennsylvania (SPE1C1-19-D-F024). *Small business **Mandatory source https://dod.defense.gov/News/Contracts/Contract-View/Article/1836925/source/GovDelivery/

  • Seeking to reposition, LMI plans to sells for-profit subsidiary

    15 juillet 2022 | International, Autre défense

    Seeking to reposition, LMI plans to sells for-profit subsidiary

    LMI has sold its for-profit subsidiary in a bid to accelerate its growth.

Toutes les nouvelles