31 janvier 2024 | International, Terrestre, Sécurité

CACI Awarded an $81 Million Task Order to Support the Defense Intelligence Agency (DIA)

The Storefront and Dissemination Support task order will provide global IT operational, sustainment, and modernization for databases across the intelligence community and the DoD.

https://www.epicos.com/article/787980/caci-awarded-81-million-task-order-support-defense-intelligence-agency-dia

Sur le même sujet

  • US Air Force considers adopting the Army’s Future Vertical Lift program

    13 juillet 2020 | International, Aérospatial

    US Air Force considers adopting the Army’s Future Vertical Lift program

    By: Valerie Insinna WASHINGTON — The U.S. Air Force is keeping an eye on the Army's next-generation rotorcraft program, which could fill a gap for agile airlift that might be needed in a fight against Russia and China, an Air Force general said Thursday. With its large air bases vulnerable to attacks from a near-peer adversary, there's no guarantee that the Air Force will be able to rely on its current processes or equipment to transfer supplies in and out of air bases. In a war with China or Russia, the U.S. Air Force would distribute its assets to bases owned by allies and partners, cutting down the threat to aircraft usually located at the service's large installations. But that poses a problem for rapidly transporting materiel like spare parts and maintenance equipment to more austere locations in a time of war, said Lt. Gen. Warren Berry, the Air Force's deputy chief of staff for logistics, engineering and force protection. “We know we're going to have to get after some other things that might be a different way of doing distribution and lift,” he said during a July 9 event hosted by the Mitchell Institute for Aerospace Studies. “It might be a different way of doing airfield recovery. It might be different equipment that's lighter and leaner that allows us to set up in a more expeditious manner with less fuel.” “Agility Prime is certainly one [option],” he said, referring to an ongoing Air Force effort to tap into the emerging commercial market for “flying cars” — basically, experimental transport aircraft that the service could use for logistics, search and rescue, or shuttling troops to remote locations. Another option is the Army's future vertical lift effort, or FVL, Berry said. “That's something that we'll certainly look at, but we know that we need to do lift in a different way.” The Army intends to break FVL into multiple programs, which could give the Air Force multiple aircraft to pick from if it decides to buy in. The future long-range assault aircraft will replace the UH-60 Black Hawk utility helicopter and is planned to be fielded in 2030. As part of the Army's risk-reduction effort, Bell Helicopter is developing its V-280 Valor, while a Sikorsky-Boeing team is working on its own SB-1 Defiant aircraft. The future attack reconnaissance aircraft would fill an existing capability gap, accomplishing the reconnaissance missions that have been performed by AH-64E Apaches teamed with Shadow drones following the retirement of the OH-58D Kiowa Warrior in 2017. It's currently on track to be fielded in 2028, with Sikorsky and Bell chosen to build prototypes. Aside from closely watching the Army's FVL effort, the Air Force is also engaging with the Army-led Joint Counter-Small Unmanned Aircraft Systems Office on ways to defend U.S. bases against small drones, Berry said. “That's going to be a demand signal on this force moving forward that we're going to have to really think through and make sure that we have them [airmen] resourced appropriately to execute that part of the air base air defense mission as well,” he said. In June, the office rolled out a plan for the Defense Department to consolidate its counter-UAS technologies from about 40 systems to a total of eight. The approved systems were chosen after an Army-led assessment and included fixed, mounted and dismounted solutions. An Air Force system known as Negation of Improvised Non-State Joint Aerial-Threats, or NINJA — which jams radio signals between the UAS and its operator — was among those selected. “Our goal is to align existing and future counter-UAS technology solutions to best address operational needs while applying resources more efficiently,” said Maj. Gen. Sean Gainey, the office's director. Berry said that the Air Force has embedded some of its personnel within the counter-UAS office to stay synchronized with the Army's efforts. “So far we're happy with where it is and where it's going,” he said. https://www.defensenews.com/air/2020/07/09/the-air-force-is-watching-the-armys-future-vertical-lift-program/

  • What Is The Ratio Of U.S. And Chinese Military Aircraft?

    30 juin 2020 | International, Aérospatial

    What Is The Ratio Of U.S. And Chinese Military Aircraft?

    Jen DiMascio What is the ratio of military aircraft between the U.S. and China? Jen DiMascio, Aviation Week Executive Editor, Defense and Space, responds: The U.S. military operates 13,319 aircraft—about three times as many manned aircraft as the Chinese military, which operates 4,519. But the ratio is not even across all types of aircraft, according to Aviation Week Intelligence Network (AWIN) data analysts Dan Urchick and Michael Tint. When it comes to combat aircraft, the ratio is more narrow: The U.S. operates 3,435 aircraft while China operates 1,943. For now, the U.S. has a qualitative edge—with 586 fifth-generation combat aircraft to China's 38. The U.S. possesses especially large advantages in rotary-wing aircraft (4.3:1); tankers and transports (4.8:1); and command, control, communications, computers, intelligence, surveillance and reconnaissance (C4ISR) platforms (4.1:1), according to AWIN data. https://aviationweek.com/defense-space/aircraft-propulsion/what-ratio-us-chinese-military-aircraft

  • U.S. Air Force Defines Radical Vision For Command And Control

    4 février 2020 | International, Aérospatial, C4ISR

    U.S. Air Force Defines Radical Vision For Command And Control

    By Steve Trimble The U.S. Air Force has released the full, sweeping vision for the Advanced Battle Management System (ABMS), a two-year-old concept that proposes to disrupt modern norms for the service's command-and-control doctrine, military acquisition policy and industrial participation. The newly released ABMS architecture defines not a traditional program of record but 28 new “product lines” divided into six major components. The implementation strategy is not focused around traditional acquisition milestones measured in years, but rather development “sprints” fielding morsels of new capabilities every four months. The rights for much of the technology, including a new radar, communication gateway and software-defined radio, are claimed not by an industrial supplier, but by the Air Force itself. USAF adopts lead systems integrator-like model ABMS architecture built on government ownership The release of the strategy on Jan. 21 comes three weeks before the Air Force plans to release a budget plan that would shift $9 billion over the next five years for a “Connect the Joint Force” initiative. The proposed funding would come from retiring certain capabilities, including aircraft fleets, within the next five years, with a clear implication: The Air Force is willing, if Congress approves, to trade some capability now to obtain the ABMS over time. “I think of it as we're finally building the ‘Internet of Things' inside the military, something that is very overdue,” says Will Roper, assistant secretary of the Air Force for acquisition, explaining the ABMS to journalists during the unveiling of the architecture in the Pentagon. The scale of the project's ambition has evolved since the ABMS was first proposed in 2018. Air Force leaders unveiled the concept two years ago as a replacement for the airborne Battle Management and Command and Control (BMC2) suite on the Northrop Grumman E-8C Joint Stars fleet. By September 2018, Roper first suggested the same technology could be applied to replace the aging fleet of Boeing RC-135 Rivet Joints and, sometime in the 2030s, the Boeing E-3C Airborne Warning and Control System. Those aims remain intact, but the revealed architecture clarifies that the goals of the ABMS are far broader. If the system is fully realized, the Air Force will create a “combat cloud” on a mobile ad hoc network, transposing the Internet of Things model from civilian technology to the battlefield. As a result, the nearly four-decade-old concept of a centralized command-and-control center—either ground-based or airborne—would be swept away by a future, decentralized digital network. Using computer processors and software algorithms instead of humans, machines would identify targets from sensor data, select the weapons and platforms to prosecute the target automatically, and finally notify the human operator when—or, crucially, whether—to pull the trigger. Roper compares the ABMS' effect on command and control to commercial services on a smartphone, such as the Waze app for drivers navigating traffic. Waze is not driven by a human staff monitoring and reporting traffic hazards, who then review each request for directions and customize a recommended route. Instead, Waze harvests traffic and hazard data from its users, while algorithms mine that information to respond to user requests for services. The Air Force's command-and-control system is constructed around the human staff model, but Roper wants to move the entire enterprise to the Waze approach. “If it didn't exist in the world around us, you'd probably say it was impossible,” Roper says, “but it does [exist].” The challenge for the Air Force is to defend and, if successful, execute that vision for the ABMS. The Air Force needs to secure the support of the other armed services, whose participation is vital to extracting the benefits of such a system. Moreover, the Air Force needs to sell the concept to Congress, despite a system that lacks obvious employment connections to specific legislative districts, such as future factory sites and operational bases. Roper acknowledges the problem of building support for an architecture, rather than a platform, such as a new fighter, bomber or ship. “Those are easy things to sell in this town. You can count them,” he says. “But the internet is not something that's easy to count or quantify, even though we're all very aware of its power.” The Air Force has briefed congressional defense committee staffs on the ABMS concept, but some remain skeptical. A Capitol Hill staffer familiar with the ABMS program doubts that other services will support the Air Force's vision. The ABMS model also appears unlikely to be embraced by industry, the staffer says. A key point of Roper's plan requires companies to cede some intellectual property rights on key elements of the ABMS architecture to the Air Force. But the Air Force is not waiting. Development of the ABMS started last year, even before an analysis of alternatives is completed. In December, the service staged the first demonstration of four new capabilities: transmitting data on a low-probability of intercept link via a gateway between stealthy Air Force and nonstealthy Navy fighters; connecting a C-130 to the SpaceX Starlink satellite constellation; demonstrating a cloud-based, command-and-control network up to a “secret” classification level; and setting up an unclassified common operational picture display at a remote command center inside a tent. As the second in the planned series of triannual events, the Air Force plans to stage the next ABMS demonstration in April, this time involving U.S. Space Force, Strategic Command and Northern Command. Roper, an Oxford-trained physicist, has little patience for the military's traditional development process, although he has made exceptions for complex, hardware-driven programs, such as the Northrop Grumman B-21 bomber and the Ground-Based Strategic Deterrent. For most other programs, Roper wants to trickle out new features at Silicon Valley-speed. A common refrain by military acquisition reformers for decades has been to emphasize delivering an incomplete, “80% solution” sooner than waiting for a system that meets each of sometimes hundreds of detailed requirements. However, for Roper the timeline for delivering even an 80% solution in certain cases is far too long. “[We should] covet the 10-15% solutions that take the next step forward,” Roper said. “Because the learning in that step is so valuable to keep the velocity.” To execute the ABMS vision, Roper appointed Preston Dunlap last year as the lead architect. Unlike a traditional program executive officer (PEO), the architect is a role introduced to the Air Force by Roper, who previously in his career served as the chief architect for the Missile Defense Agency. The six components and 28 production lines for the ABMS are spread across multiple program offices, rather than consolidated under a single PEO. Thus, the role of the architect is to define the vision and then shape acquisition schedules as the various technologies reach maturity. Under Dunlap's architecture, the ABMS is built around six components: new sensors feeding databases in a cloud-based computing environment using software-defined radios, with new apps fusing the data into a common operational picture and integrated effects allowing cruise missiles, for example, to automatically retask sensors on other platforms during flight. Among the 28 product lines, the Air Force proposes to own the rights to the radar, software-defined radio and communications gateway. The Air Force's role resembles the lead systems integrator (LSI) model used for a series of largely failed acquisition programs 15-20 years ago, including the Army's Future Combat System and Coast Guard's Deepwater. In this case, however, the LSI is the Air Force, not an industrial supplier. Such an approach is not unprecedented. The Navy is using a similar model to manage the MQ-25A program, with Boeing selected as a subcontractor to deliver the air vehicle and Naval Air Systems Command providing the ground station and integrating both on an aircraft carrier. The gateway used in the first ABMS demonstration in December offers an example, Roper says. “We took a radio system that was actually built in concert with Northrop Grumman and Lockheed Martin to be able to deal with both platforms with the waveforms, and then a Honeywell antenna was able to speak across the frequencies associated with both radio systems,” Roper said. “So we got those three primary vendors working together underneath our government leadership.” https://aviationweek.com/defense-space/us-air-force-defines-radical-vision-command-control

Toutes les nouvelles