9 janvier 2019 | International, Aérospatial

Bulgaria ready to start talks with U.S. on F-16 jet deal

Angel Krasimirov, Tsvetelia Tsolova

SOFIA (Reuters) - The Bulgarian government has approved a plan to start talks with the United States on buying eight new F-16 fighter jets to replace its ageing Soviet-made MiG-29s and improve compliance with NATO standards, the defense minister said on Wednesday.

A deal for Lockheed Martin's F-16V Block 70 would be worth around 1.8 billion levs ($1.1 billion), Bulgaria's biggest military procurement since the fall of Communist rule some 30 years ago.

The decision still requires parliament's approval.

Other bidders had included Sweden, with Saab's Gripen jets, and Italy, with second-hand Eurofighters.

Senior defense ministry and army officials say the F-16 is a multi-role fighter plane that had been tested in battle and had a long lifespan.

The defense ministry has previously said that the United States does not need additional licenses and agreements to supply the war plans with the necessary weaponry and licenses, unlike the offers from Sweden and Italy.

“The government is proposing to the parliament to allow it to start talks with the United States to acquire new war planes,” Defense Minister Krasimir Karakachanov told reporters.

The center-right coalition government has a thin majority in parliament, which is expected to vote on the move next week.

The plan has spurred heated political debates in the Black Sea country with supporters hailing it as a strategic choice for Bulgaria, whose NATO neighbors are also flying F-16s, while critics accused the government of breaching the tender rules.

On Tuesday, the White House said the United States was ready to work with the government to tailor a deal that will fit Bulgaria's budgetary and operational requirements. Its bid at present exceeds the tender's estimated limit, officials said.

“We believe that the F-16 Block 70 offers Bulgaria the best possible combination of price, capability and interoperability with other NATO air forces,” U.S. President Donald Trump's administration said in a statement.

Bulgarian President Rumen Radev, a former air force commander and frequent critic of Prime Minister Boyko Borissov, is believed to favor the Swedish bid and has criticized the process as flawed and “a triumph of lobbying”.

Critics have questioned whether the United States can deliver the first two F-16 jets within two years as required and pointed to a U.S. proposal for a one-off payment upon contracting rather than offering a long-term payment scheme as preferred in the tender.

Sweden has expressed its disappointment over the decision and said its offer was well below the estimated budget, provided for deferred payment and was ready to deliver on time.

The question of which warplanes to buy has been vexing successive governments in Bulgaria for more than a decade.

Borissov's government re-launched the tender in July, after a parliament commission ruled that a previous process which favored the Gripen jets, should be reviewed.

($1 = 1.7057 leva)

Editing by Kevin Liffey and Susan Fenton

https://www.reuters.com/article/us-bulgaria-defence-jets/bulgaria-decides-to-start-talks-with-u-s-on-f-16-jet-deal-idUSKCN1P30W9

Sur le même sujet

  • Four technologies Japan and the US should team on to counter China

    20 avril 2020 | International, Aérospatial, Naval, Terrestre, C4ISR

    Four technologies Japan and the US should team on to counter China

    Aaron Mehta WASHINGTON — The U.S. and Japan need to expand their collaboration on defense technologies in the future, with a specific focus on four technologies that can help counter the rise of China, according to a new report released Friday by the Atlantic Council. The report also highlights the ongoing discussions about U.S. involvement in Japan's next domestic fighter program as a high-stakes situation that could dictate industrial cooperation between the two nations for years. “The most important component of cooperation on defense capabilities is direct coordination and collaboration on emerging technologies and capabilities,” write authors Tate Nurkin and Ryo Hinata-Yamaguchi, identifying unmanned systems, hypersonic/hyper-velocity missiles, and the defense applications of AI as three key areas where the U.S. and Japan need to start working together on. “These three areas are at the center of the intensifying U.S.-China military-technological competition. They are key to challenging or upholding military balances and stabilizing imbalances in and across key domain-area competitions — strike versus air and missile defense or undersea — on which regional and, over time, global security is at least partly based,” the authors note. Specifically, the authors identify four project areas that both fit into U.S. strategy and Japan's regional interests, while also matching industrial capabilities: Swarming technology and the loyal wingman: For several years the Pentagon has been investing R&D funding into the development of drones that can be slaved to a fighter jet, providing a “loyal wingman” controlled by the one pilot. Drone swarms are another area of heavy investment. Both concepts fit for Japan, whose Ministry of Defense expressed interest in both concepts going back as far as 2016. Unmanned underwater vehicles and anti-submarine warfare capabilities: China has invested heavily in submarines over the last decade, both manned and unmanned. The U.S. has also begun investing in UUV capabilities, but while Japan's IHI has developed a domestic UUV, the MoD has yet to go all in on the capability. The authors note it is a logical area of collaboration. AI-enabled synthetic training environments: The U.S. and Japan ran a joint synthetic training exercise in 2016, but the authors would like to see development expanded in the future. “Given both countries' need to accelerate training, their shared competency in machine learning and virtual and augmented reality, and a highly fractured simulation and training market, there is potential for a collaborative program to develop a synthetic simulation and training capability, to stress the specific operational contingencies to which US and Japanese forces will have to respond,” they write. Counter-unmanned systems: The entire world seems to be investing in weapons to counter unmanned systems, but the authors see a solid spot for the two nations to find workable technologies together. Japan's acquisition group is currently testing a “high-power microwave generation system” for this mission. That all sounds good on paper, the authors acknowledge, but there are very real challenges to increasing technology development between the two countries. Japan's modernization priorities are best viewed through a defensive lens, designed to protect the island nation. That's a contrast to America's posture in the region, which tends more towards force projection. In addition, Japan lags in military space and cyber operations compared to the U.S., making cross-domain collaboration challenging in several areas. Those negotiations have also been impacted by “different perceptions of the nature of joint technology research,” the authors write. “U.S. defense officials have ‘emphasized operational concepts and capability requirements as the basis for collaboration,' while Japanese officials have ‘continued to focus on technology development and industrial base interests.'” Other challenges include Japan's 1 percent-of-GDP cap on defense spending, as well as the state of Japan's defense industry, which until 2014 was focused entirely on serving the Japanese government's needs. Hence, the industry, while technically very competent, is also relatively small, with limited export experiences – and Tokyo has an interest in protecting that industry with favorable contracts. Meanwhile, U.S. firms have concerns about “potentially losing revenue, transfer of sensitive technologies, and the potential replacement of US companies with Japanese ones in critical supply chains,” the authors write. Some of those issues have come to the forefront in the ongoing discussions about what role American firms can play in Japan's ongoing fighter development program. Japan recently rejected an offer by Lockheed Martin of a hybrid F-22/F-35 design, stating that “developing derivatives of existing fighters cannot be a candidate from the perspective of a Japan-led development.” Getting the F-3 deal right will have long term implications for how the two nations develop capabilities together, the authors warn, quoting defense analyst Gregg Rubinstein in saying “Successfully defining a path to U.S.-Japanese collaboration on this program could make the F-3 an alliance-building centerpiece of cooperative defense acquisition” while failure to do so could “undermine prospects for future collaboration in defense capabilities development.” Putting aside the internal issues, any collaboration between the U.S. and Japan has to be considered through the lens it will be see in Beijing and, to a lesser extent, Seoul. “Even marginal differences in perception produce limits to the parameters of U.S.-Japan joint development of, and coordination on, military capabilities. Especially provocative programs like joint hypersonic-missile development will be viewed as escalatory, and will likely generate a response from China,Russia, and/or North Korea that could complicate other trade or geopolitical interests that go beyond Northeast Asia,” the authors warn, noting that China could attempt to exert more pressure on the ASEAN nations as a counterweight. Additionally, South Korea would likely “see substantial U.S.-Japan collaboration not through an adversarial lens, but certainly through the lens of strained relations stemming from both historical and contextual issues, further complicating U.S.-Japan-Republic of Korea trilateral cooperation.” https://www.c4isrnet.com/global/asia-pacific/2020/04/16/four-technologies-japan-and-the-us-should-team-on-to-counter-china/

  • Indra signs an agreement with Spanish startup IDBOTIC, now onboard NGWS/FCAS, Europes largest defence program

    21 juillet 2024 | International, Aérospatial

    Indra signs an agreement with Spanish startup IDBOTIC, now onboard NGWS/FCAS, Europes largest defence program

    This is a critical system to ensure the security of our continent in the future and will be based on a sixth-generation fighter that will fly escorted by several remotely...

  • Bringing Photonic Signaling to Digital Microelectronics

    7 novembre 2018 | International, C4ISR

    Bringing Photonic Signaling to Digital Microelectronics

    DARPA program seeks to unleash the performance of modern multi-chip modules by integrating optical signaling at the chip-level OUTREACH@DARPA.MIL 11/1/2018 Parallelism – or the act of several processors simultaneously executing on an application or computation – has been increasingly embraced by the microelectronics industry as a way of sustaining demand for increased system performance. Today, parallel computing architectures have become pervasive across all application domains and system scales – from multicore processing units in consumer devices to high-performance computing in DoD systems. However, the performance gains from parallelism are increasingly constrained not by the computational limits of individual nodes, but rather by the movement of data between them. When residing on modern multi-chip modules (MCMs), these nodes rely on electrical links for short-reach connectivity, but once systems scale to the circuit board level and beyond, the performance of electrical links rapidly degrades, requiring large amounts of energy to move data between integrated circuits. Expanding the use of optical rather than electrical components for data transfer could help significantly reduce energy consumption while increasing data capacity, enabling the advancement of massive parallelism. “Today, microelectronic systems are severely constrained by the high cost of data movement, whether measured in terms of energy, footprint, or latency,” said Dr. Gordon Keeler, program manager in DARPA's Microsystems Technology Office (MTO). “Efficient photonic signaling offers a path to disruptive system scalability because it eliminates the need to keep data local, and it promises to impact data-intensive applications, including machine learning, large scale emulation, and advanced sensors.” Photonic transceiver modules already enable optical signaling over long distances with high bandwidth and minimal loss using optical fiber. Bottlenecks result, however, when data moves between optical transceivers and advanced integrated circuits in the electrical domain, which significantly limits performance. Integrating photonic solutions into the microelectronics package would remove this limitation and enable new levels of parallel computing. A new DARPA program, the Photonics in the Package for Extreme Scalability (PIPES) program, seeks to enable future system scalability by developing high-bandwidth optical signaling technologies for digital microelectronics. Working across three technical areas, PIPES aims to develop and embed integrated optical transceiver capabilities into cutting-edge MCMs and create advanced optical packaging and switching technologies to address the data movement demands of highly parallel systems. The efficient, high-bandwidth, package-level photonic signaling developed through PIPES will be important to a number of emerging applications for both the commercial and defense sectors. The first technical area of the PIPES program is focused on the development of high-performance optical input/output (I/O) technologies packaged with advanced integrated circuits (ICs), including field programmable gate arrays (FPGAs), graphics processing units (GPUs), and application-specific integrated circuits (ASICs). Beyond technology development, the program seeks to facilitate a domestic ecosystem to support wider deployment of resulting technologies and broaden their impact. Projections of historic scaling trends predict the need for enormous improvements in bandwidth density and energy consumption to accommodate future microelectronics I/O. To help address this challenge, the second technical area will investigate novel component technologies and advanced link concepts for disruptive approaches to highly scalable, in-package optical I/O for unprecedented throughput. The successful development of package-level photonic I/O from PIPES' first two technical areas will create new challenges for systems architects. The development of massively interconnected networks with distributed parallelism will create hundreds to thousands of nodes that will be exceedingly difficult to manage. To help address this complexity, the third technical area of the PIPES program will focus on the creation of low-loss optical packaging approaches to enable high channel density and port counts, as well as reconfigurable, low-power optical switching technologies. A full description of the program is available in the Broad Agency Announcement. For more information, please visit: https://www.fbo.gov/spg/ODA/DARPA/CMO/HR001119S0004/listing.html https://www.darpa.mil/news-events/2018-11-01

Toutes les nouvelles