19 juillet 2022 | International, Aérospatial

Airbus A330 MRTT becomes world’s first tanker certified for automatic air-to-air refuelling operations - Skies Mag

The A330 MRTT has become the world’s first tanker to be certified for automatic air-to-air refuelling boom operations in daylight, following a successful campaign in collaboration with the Republic of Singapore Air Forc

https://www.skiesmag.com/airbus-a330-mrtt-becomes-worlds-first-tanker-certified-for-automatic-air-to-air-refuelling-operations

Sur le même sujet

  • F-35 simulators can now team up with other fighter sims for virtual combat

    9 juillet 2020 | International, Aérospatial

    F-35 simulators can now team up with other fighter sims for virtual combat

    By: Valerie Insinna WASHINGTON — U.S. Air Force F-35 pilots at Nellis Air Force Base, Nevada, will now be able to step into a simulator and train alongside virtual F-16s, F-15s and other aircraft, a Lockheed Martin executive said Wednesday. Air Combat Command formally accepted Lockheed's Distributed Mission Training system on June 22 after a final test on June 18. During that test, four F-35 simulators at Nellis carried out a virtual mission with pilots in F-22, F-16 and E-3 AWACs simulators at other bases, said Chauncey McIntosh, Lockheed's vice president for F-35 training and logistics. “We did originally intend to deliver this in the April time frame, but Nellis Air Force Base did shut down some operations due to the COVID crisis,” he told reporters in a July 1 briefing. “We worked very hard with both the [F-35 Joint Program Office] and the United States Air Force to ensure as soon as the facilities were re-stood up and open, that we were there to deliver this capability.” Although F-35 pilots in a simulator could previously train with up to three other F-35 sims at the same site, the DTS system allows for those pilots to fly digitally with a large number of varying types of aircraft, as long as the simulators can operate on the same network. Lockheed previously connected F-35 simulators to other aircraft sims in its test lab, but the June 18 test was the first time F-35 simulators linked to a mass of other simulators for a virtual mission in a highly contested environment, Lockheed said in a news release. F-15s will also be able to connect into the DMT system. The next step, McIntosh said, will be installing the DMT capability at Naval Air Station Lemoore this fall and to Marine Corps Air Station Miramar in spring 2021. Both bases are in California. However, some limitations will still exist, even as new DMT locations are spun up. The capability is “very scalable to other platforms,” McIntosh said, but currently only F-35, F-22, F-16, F-15 and E-3 simulators are supported by DMT. McIntosh also previously told Defense News that the U.S. Air Force, Navy and Marine Corps as well as the United Kingdom, which also plans to acquire the DMT system, won't be able to train together because they use different networks. https://www.defensenews.com/air/2020/07/01/f-35-simulators-can-now-team-up-with-other-fighter-sims-for-virtual-combat

  • USAF Wants Beyond-Line-Of-Sight Data For Its Mobility Fleet

    5 octobre 2021 | International, Aérospatial

    USAF Wants Beyond-Line-Of-Sight Data For Its Mobility Fleet

    The U.S. Air Force wants its heavy airlifters and refueling tankers to be more connected and is reaching out to industry to see what beyond-line-of-sight data services are available to make that happen quickly.

  • LOCKHEED MARTIN CONTRACT TO MARRY MACHINE LEARNING WITH 3-D PRINTING FOR MORE RELIABLE PARTS

    1 octobre 2018 | International, Naval

    LOCKHEED MARTIN CONTRACT TO MARRY MACHINE LEARNING WITH 3-D PRINTING FOR MORE RELIABLE PARTS

    U.S. Navy research contract could make complex metal additive manufacturing a reality both in production centers and deep in the field DENVER, Oct. 1, 2018 /PRNewswire/ -- Today, 3-D printing generates parts used in ships, planes, vehicles and spacecraft, but it also requires a lot of babysitting. High-value and intricate parts sometimes require constant monitoring by expert specialists to get them right. Furthermore, if any one section of a part is below par, it can render the whole part unusable. That's why Lockheed Martin (NYSE: LMT) and the Office of Naval Research are exploring how to apply artificial intelligence to train robots to independently oversee—and optimize—3-D printing of complex parts. The two-year, $5.8 million contract specifically studies and will customize multi-axis robots that use laser beams to deposit material. The team will develop software models and sensor modifications for the robots to build better components. Lockheed Martin Metal 3D printer "We will research ways machines can observe, learn and make decisions by themselves to make better parts that are more consistent, which is crucial as 3-D printed parts become more and more common," said Brian Griffith, Lockheed Martin's project manager. "Machines should monitor and make adjustments on their own during printing to ensure that they create the right material properties during production." Researchers will apply machine learning techniques to additive manufacturing so variables can be monitored and controlled by the robot during fabrication. "When you can trust a robotic system to make a quality part, that opens the door to who can build usable parts and where you build them," said Zach Loftus, Lockheed Martin Fellow for additive manufacturing. "Think about sustainment and how a maintainer can print a replacement part at sea, or a mechanic print a replacement part for a truck deep in the desert. This takes 3-D printing to the next, big step of deployment." Currently, technicians spend many hours per build testing quality after fabrication, but that's not the only waste in developing a complex part. It's common practice to build each part compensating for the weakest section for a part and allowing more margin and mass in the rest of the structure. Lockheed Martin's research will help machines make decisions about how to optimize structures based on previously verified analysis. That verified analysis and integration into a 3-D printing robotic system is core to this new contract. Lockheed Martin, along with its strong team, will vet common types of microstructures used in an additive build. Although invisible from the outside, a part could have slightly different microstructures on the inside. The team will measure the performance attributes of the machine parameters, these microstructures and align them to material properties before integrating this knowledge into a working system. With this complete set of information, machines will be able to make decisions about how to print a part that ensures good performance. The team is starting with the most common titanium alloy, Ti-6AI-4V, and integrating the related research with seven industry, national lab and university partners. About Lockheed Martin Headquartered in Bethesda, Maryland, Lockheed Martin is a global security and aerospace company that employs approximately 100,000 people worldwide and is principally engaged in the research, design, development, manufacture, integration and sustainment of advanced technology systems, products and services. This year the company received three Edison Awards for ground-breaking innovations in autonomy, satellite technology and directed energy. SOURCE Lockheed Martin https://news.lockheedmartin.com/2018-10-01-Lockheed-Martin-Contract-to-Marry-Machine-Learning-with-3-D-Printing-for-More-Reliable-Parts

Toutes les nouvelles