Back to news

November 27, 2020 | International, Naval

Thales va fournir à Paris et Londres un système autonome de lutte anti-mines

PARIS (Reuters) - Le groupe français d'électronique de défense Thales a annoncé jeudi qu'il allait fournir à la Royal Navy britannique et à la Marine nationale française le premier système au monde autonome de lutte anti-mines entièrement intégré.

La livraison de ces systèmes, qui ont été testés en conditions réelles en France et en Grande-Bretagne, est prévue à partir de 2022, a indiqué le groupe dans un communiqué, sans préciser le montant de ce contrat.

Thales et le britannique BAE Systems ont remporté en 2015 le contrat du programme franco-britannique de lutte contre les mines marines, baptisé MMCM (Maritime Mine Counter Measures).

(Claude Chendjou, édité par Jean-Michel Bélot)

https://www.usinenouvelle.com/article/thales-va-fournir-a-paris-et-londres-un-systeme-autonome-de-lutte-anti-mines.N1033454

On the same subject

  • 3-D Scanning Technology Makes Splash at NNSY Thanks to Partnership with Puget Sound

    August 1, 2019 | International, Naval

    3-D Scanning Technology Makes Splash at NNSY Thanks to Partnership with Puget Sound

    By Kristi Britt, Public Affairs Specialist, PORTSMOUTH, Va (NNS) -- Although they have only worked at Norfolk Naval Shipyard (NNSY) for less than 10 months, two employees are already involved in the future of innovative technologies in America's Shipyard. Code 268 Engineering Technician Jason Ewick and Code 2340 Assist Shift Test Engineer (ASTE) Joey Hoellerich were brought into the NNSY Technology and Innovation (T&I) Lab, a group dedicated to bringing the real ideas and technologies of the shipyard to the forefront. With their arrival to the team, both were given the unique opportunity to share knowledge with Puget Sound Naval Shipyard and Intermediate Maintenance Facility (PSNS&IMF), using laser scanning to provide accurate measurements for shipboard work. “The USS Dwight D. Eisenhower (CVN 69) was at NNSY in years past, Naval Air Systems Command (NAVAIR) brought Puget Sound representatives to our shipyard to use their laser scanning technology to cut off all added material from four sponsons onboard the vessel,” said NNSY T&I Lab Lead Dan Adams. Sponsons are the projections extending from both sides of the watercraft to provide protection, stability, mounting locations, etc. “During the time, we observed the process and wanted to learn what we could from our sister shipyard team.” The team from PSNS&IMF returned to NNSY to give guidance on the process, with Code 290 representative Dan Hager, and Shop 11 Mold Loft representatives Jason Anderson and Jeremiah Swain taking charge in sharing what they knew to Ewick and Hoellerich. “The team from Puget was absolutely amazing and shared the ins and outs of the 3-D scanning technology with us,” said Ewick. “I had done laser scanning work in the private industry but it was my first time tackling something like this. Hager, Anderson, and Swain guided us through each step, sharing as much knowledge as they could with us about two different processes we could use to get the results we needed.” The first process is photogrammetry, where you place targets an inch apart on a desired object or space for scanning. Once complete, you take multiple photographs which are then compiled into a software to build the 3-D model. The second process is the 3-D laser scanning, which requires more space for a larger read. The targets would be placed and then someone would operate the laser tracker and scanner from the pier to get the scan needed. Once completed, the 3-D model would be compiled in the software for use. With the knowledge provided by PSNS&IMF and USS George H.W. Bush (CVN 77) in drydock, Ewick and Hoellerich were ready to tackle the process for NNSY. “We began at Colonna's Shipyard in Norfolk where the sponsons are being produced,” said Ewick. “We use the scanning technology to analyze where the sponson would meet the shell of the ship. It helps provide an accurate measurement for our workers when it comes to installation and repair.” Next up was scanning after the pieces were installed. At this time three of the four sponsons have been installed onboard the Bush. “The two forward sponsons were scanned using photogrammetry,” said Ewick. “It was a first for us and required coordination across various shops and codes throughout the shipyard.” The Pipefitter Shop (Shop 56), The Optical Diesel Mechanics (Shop 38), the Shipfitter Shop (Shop 11), the Shipyard Operations Department (Code 300), and partners at Puget all played a part in this evolution. “It was a collaborative effort and we were able to be successful thanks to our shipyard family coming together to make it happen.” This process was a first for NNSY and a first for using the software directly in the drydock instead from piers and barges. “It's amazing to see something come together like this, especially when you think that we were two blank slates coming into the project,” said Hoellerich who had no prior experience working with 3-D scanning and metrology before joining the lab. “We were able to partner with our sister shipyard and work with shops and codes that I never thought I'd be able to do when I first joined the ranks of NNSY. Being able to gain that knowledge from our shipyard family and utilize what we've learned in the field is something those of us working in innovation live for.” The team will be completing the rear scans for the Bush in the future and hope to continue to perfect the process. In addition, they hope to continue to work with other shipyard entities to further expand on the technologies of the future. “This partnership has been a major success for us and we hope to continue to build those relationships with the other shipyards and beyond,” said Hoellerich. “We can all learn from each other and build from each other's experiences. We all share a mission and together we can succeed.” Ewick added, “we've also begun expanding more ways we can use the scanning technology at our shipyard. For example, we are looking into a future project where we scan inside the ship and build a path for extracting heavy equipment from within as to avoid interferences. We've seen more interest from others within the shipyard since we began to do work with this technology, seeing what ways it could help improve what we do here. That's what innovation is all about, taking those first steps in seeing what works. Even if what you try doesn't pan out, at least you gave it a shot. But you'll never know if it works or not unless you take that step. Don't be scared to try out something new.” For more information regarding innovation, contact the NNSY T&I Lab at 757-396-7180 or email the REAL Ideas program at NNSY_REALIdeas@navy.mil. https://www.navy.mil/submit/display.asp?story_id=110422

  • Congress passed the FY24 defense policy bill: Here’s what’s inside

    December 14, 2023 | International, Security

    Congress passed the FY24 defense policy bill: Here’s what’s inside

    Congress just passed the FY24 National Defense Authorization Act. Here's a look at some key provisions.

  • Air Force small business program seeks technologies to help counter COVID-19

    April 3, 2020 | International, Aerospace

    Air Force small business program seeks technologies to help counter COVID-19

    by Sandra Erwin In response to the SBIR solicitation, a space startup is developing a geospatial intelligence-based tool that can help governments identify infected areas. WASHINGTON — The U.S. Air Force Small Business Innovation Research office has posted a new solicitation that includes COVID-19 countermeasures as an area of interest. The March 30 Small Business Innovation Research solicitation, like most SBIR calls, is open to proposals on any topic that addresses a defense-focused need. But this is the first one that includes COVID-19 “defeat and mitigation related to Air Force operations and activities” as an area of interest. Proposals are due April 30. This SBIR is for “direct to Phase 2” contracts of up to $1 million over 27 months. Phase 1 awards are for early research work whereas Phase 2 are for technologies that are relevant to defense needs but also have commercialization potential. Some Air Force SBIR programs require matching funds from private investors. According to the March 30 solicitation, companies can compete for $1 million Air Force awards but private matching funds are not a requirement. The SBIR solicitation is an opportunity for startups in space and defense to adapt technologies for COVID-19 response, Shawn Usman, an astrophysicist with Rhea Space Activity, told SpaceNews. Usman said Rhea Space Activity has partnered with Illumina Consulting Group and Dynamic Graphics to offer a geospatial intelligence-based tool that can help governments identify infected areas much faster than is currently possible. “We can provide operational, real-time data analysis and alerting capabilities to federal, state, and military emergency operations centers,” he said. “Our solution will collect publicly available information, including social media and adware data, and correlate it with other data sets from public health organizations to create alerts detailing the emergence of COVID-19 hotspots.” Using open-source analytics and satellite collected geospatial information it would be possible to “readily confirm COVID-19 infected population areas, and will provide first responders with much more detailed, real time information to formulate their own reaction plans,” Usman said. https://spacenews.com/air-force-small-business-program-seeks-technologies-to-help-counter-covid-19/

All news