Back to news

October 1, 2018 | International, Aerospace, Naval, Land, C4ISR

Here is what Marines really need for realistic simulations training

By:

MARINE CORPS BASE QUANTICO, Va., ― Last year at the annual military expo here, Commandant Gen. Robert B. Neller told industry his vision for simulations is a kind of Star Trek-like holodeck in which any Marine could fight any battle on any terrain in virtual reality.

Since then, Secretary of Defense James Mattis has said that close combat infantry units should fight 25 battles before they ever taste real combat.

This year one of the Marines in charge of bringing those simulation dreams to reality laid down some of the tangible needs of the Corps now and in the near-term.

Lt. Col. Byron Harder, with Training and Education Command's capabilities division, told the audience at this year's Modern Day Marine military expo that while live training will always remain the standard against which a unit's readiness is measured, even live training has its limits.

It costs a lot of money to ship Marines out to Twentynine Palms or other areas. It costs money to fire munitions. Some of those munitions can't be fired in most areas.

Some of the advanced weapons, such as cyber and electronic warfare types, can't be used for fear of damaging civilian networks or facilities in the United States. And some really advanced weapons can't be demonstrated where just anyone can see them in action, thus revealing our tech to adversaries.

And that is where simulations can help bridge the gap.

But first, there's a list of things that must come to fruition.

Much of that is going to be software and bandwidth, basically getting better versions of terrains and simulations that are more realistic and can accommodate as much as a division's worth of players and an equally complex, simulated adversary.

But some items are smaller and more hands-on, like better virtual reality and augmented reality headsets.

Those headsets are key since the Marines want them to work not as they do now, with pounds of cabling in bulky indoor shooting simulators but light with long-lasting batteries that can be taken in the field and on deployment.

Harder said a goggle that is about twice the weight of existing eye protection, perhaps with its power source somewhere on the body, is likely five to 10 years away based on his survey of the field.

There's another an ongoing need: better drones.

But instead of longer flying, large-scale drones that can coordinate complex fires and sensors for the operational environment, what Harder said simulations needs are smaller drones that can fly lower, giving Marines a street-level, detailed view of the battlespace so they can create their own terrain maps and fight the simulated fight in the areas they'll really be operating in.

And those video feeds that are now on every ISR platform in the real world? Simulations need them too, to be realistic. That means game designers have to have human-like activity going on in areas instead of some digital “blob” representing enemies. That way, when a commander wants to zoom in on a tactical frame in the game, they'll be able to do it just like in theater.

Which brings it to one of the more ambitious items beyond terrain and hardware: getting simulations to act more like humans.

As it works now, unit commanders set up their forces, work their mission sets and then the virtual “forces” collide and often a scripted scenario plays out.

Not too realistic.

What's needed is both civilian simulations to act like civilian populations might act in the real world and the same for the enemy, taking advantages, fighting and withdrawing.

But one step further is key: The enemy has to talk back.

When a commander finishes the fight, they should be able to query the virtual enemy and figure out why it did what it did, how it gained a certain advantage.

And it shouldn't take a programmer to “talk” with the simulation. Units communicate via voice and chat. That's how simulations users must be able to talk with their simulated civilians, allies and enemies, in plain language.

These pursuits are not happening in a vacuum. This April for the first time Marine pilots at both Yuma, Arizona, and Camp Pendleton, California, ran flight simulations coordinated with ground units at the Marine Corps Air Ground Combat Center in Twentynine Palms, California.

Those were done at a battalion level with a short prep time, far different than the large-scale Marine Expeditionary Unit or Marine Expeditionary Brigade-sized training that is typical.

That is part of a larger effort to create a “plug-and-play” type of training module that any battalion, and later smaller units, can use at home station or on deployment to conduct complex, coordinated training.

What made that work new was pairing legacy systems with a variety of software and operating systems between them.

That's another example of what needs to be fixed.

Marines and other services are, in many cases, using systems that were designed decades apart and creating a labyrinth of patchwork methods to get the hardware to work together when it wasn't built for that type of operation.

The new systems must be open architecture so that new tech, new weapons and new terrain can be added on the fly. But also secure enough to operate across networks and not be spied upon by those who would want a peek at our tactics.

Across the infantry battalions Marines received new gear last year called Tactical Decision Kits. These allow for squad to company-sized elements to do video game-play for their unit exercises, complete with NFL-style replay of engagements and decisions.

That's a low-level example of one thing that's lacking in current training, Harder said. Right now the main piece of tech for a Marine commander conducting an after action review is a pen and paper pad.

But with ISR drones, body cams and sensors, Marines in the near-term future should be able to monitor individual Marine's energy and hydration levels, where they pointed their weapon, when they fired, how many rounds, if they hit their target, even where their eyes were looking while on patrol.

And, if on deployment, Marines can't rely on a cadre of civilian contractors back home to run their hardware. To that end, the Corps began two courses last year, the Simulation Professional Course and the Simulations Specialist Course.

Both give Marines in infantry units experience setting up simulations and running the games for their units. They input training objectives and can understand and put together training for the unit staff or just for their fire team back in the barracks.

https://www.marinecorpstimes.com/news/your-marine-corps/2018/09/28/here-is-the-current-checklist-for-marine-corps-simulations-training

On the same subject

  • Amid Ukraine crisis, Lockheed-Raytheon partnership gets $309M for Javelins

    May 20, 2022 | International, Land

    Amid Ukraine crisis, Lockheed-Raytheon partnership gets $309M for Javelins

    The US has provided more than 5,500 Javelin shoulder-mounted anti-armor systems to Ukraine since the beginning of the Biden administration.

  • Army picks 6 to work on autoloader for extended-range cannon

    January 27, 2020 | International, Land

    Army picks 6 to work on autoloader for extended-range cannon

    By: Jen Judson WASHINGTON — The Army has picked six companies to work on concepts and designs for an autoloader for the service's future Extended-Range Cannon Artillery (ERCA) program currently under development, according to a Jan. 24 Army Futures Command statement. While the first ERCA cannons will be fielded in fiscal 2023, the goal is to begin fielding the system with an autoloader just one year later. The companies — Actuate (formerly Aegis Systems, Inc.); Apptronik, Inc.; Carnegie Robotics LLC; Pratt & Miller Engineering; Neya Systems, LLC and Hivemapper, Inc. — will work under the Army Capability Accelerator and the Army Applications Laboratory (AAL) as part of the Field Artillery Autonomous Resupply (FAAR) “cohort” and will come up with novel, outside-of-the-box concepts for the autoloader. AAL is part of AFC, the Army's new four-star command in charge of rapid modernization that will align with the service's new developing doctrine. The cohort began work on Jan. 13 in Austin, Texas, where the AAL and AFC reside, and will wrap up work with capability presentations on April 2, the statement notes. “Sourced from across the country, the selected companies represent a range of technologies and expertise all aimed at developing autonomous resupply capabilities,” the statement reads. Among the companies selected, Actuate specializes in artificial intelligence focusing on computer vision software that turns any security camera into an “intruder- and threat-detecting smart camera," the release states. Apptronik is a robotics company spun out of the Human Centered Robotics Lab at the University of Texas at Austin. Pittsburgh-based Carnegie Robotics specializes in robotic sensors and platforms for defense, agriculture, mining, infrastructure and energy applications and was founded out of Carnegie Mellon University's National Robotics Engineering Center. Pratt & Miller's focus has been on addressing technology challenges in the motorsports, defense and mobility industries. Neya Systems, also from Pittsburgh, Pennsylvania, is another robotics company focused on advanced unmanned systems, off-road autonomy and self-driving vehicle technologies. The AAL has become the face of doing business with the Army in the startup community and has set up shop in the heart of Austin within an innovation incubator hub called the Capital Factory. Anyone can walk through an open garage door and pitch ideas to the Army and the service. But the Army is also going out to companies and trying to convey problems they need solved on the battlefield in the hopes of finding new and novel solutions. “Designed for small businesses and companies that don't typically work with the federal government, the program connects qualified companies that want to grow a new line of business into the DoD with Army stakeholders who want to speed capability development, transition to a program of record, or de-risk and inform requirements,” according to the statement. “We've spent the past year working to introduce commercial business models that translate to the Army and can help evolve its approach to capability development,” Porter Orr, product innovation lead at AAL, said. “We're helping nontraditional companies build a new line of business into the government. And that's important, but it's just as important that we're giving Army leaders a choice between writing a large check or doing nothing. This is a way for them to get more insight—more confidence—in a solution before purchasing it. That will mean a higher probability of success in the field.” Cohort participants receive $150,000 to complete a 12-week program ending in a pitch to the Army. FAAR is the pilot effort of likely many attempts to bring in non-traditional businesses to help solve some of the Army's problems both big and small. https://www.defensenews.com/land/2020/01/24/army-picks-6-to-work-on-autoloader-for-extended-range-cannon

  • Watchdog expects delays to Space Force's next missile warning satellites

    September 23, 2021 | International, Aerospace

    Watchdog expects delays to Space Force's next missile warning satellites

    The unclassified report finds that technological and staffing challenges pose a high risk of delays for the Next Generation Overhead Persistent Infrared program.

All news