Back to news

August 3, 2018 | International, C4ISR

Army, NASA Want Laser Micro-Satellites For 50 Times The Bandwidth

By

It was hard enough keeping the data flowing to the far mountains of Afghanistan, but at least the Taliban didn't have the technology to attack the network. Russia and China, however, are investing heavily in capabilities to eavesdrop on or jam the radio transmissions and to blind or outright shoot down the satellites.

ASSOCIATION OF THE US ARMY, ARLINGTON: War zones, it turns out, get crappy reception. But the Army, NASA, and multiple private companies are looking to optical communications — that means lasers — off affordable micro-satellites that could dramatically increase bandwidth. Just this morning, the federally funded Aerospace Corporation announced a successful test for NASA that provided bandwidth 50 times higher — an almost 5,000 percent increase — than current military satellites that use radio waves.

Bassett: Military Necessity

Not three hours before the Aerospace Co. announcement, Maj. Gen. David Bassettwas getting excited about optical satellites at the Association of the US Army's annual cyber and networks conference here. That matters because, after a successful tour in charge of armored vehicle programs, Bassett is now the Army's Program Executive Officer for Command, Control, Communications – Tactical (PEO-C3T).

Currently, Bassett said, during a typical exercise at the Joint Readiness Training Center, meant to depict realistic combat conditions, an Army brigade HQ gets a satellite link that can transmit two megabits a second. By comparison, he said, one of his fellow panelists, Forcepoint Federal CTO George Kamis, had just clocked his smartphone at 70megabits per second. That's 35 times the power the 4,000-soldier brigade gets, for just one person.

“We have to provide more bandwidth to a headquarters than Mr. Kamis has in his pocket,” said Bassett.

Full article: https://breakingdefense.com/2018/08/army-nasa-want-laser-micro-satellites-for-50-times-the-bandwidth

On the same subject

  • Leidos to develop autonomous uncrewed aerial resupply system for U.S. Marine Corps

    April 20, 2023 | International, Aerospace

    Leidos to develop autonomous uncrewed aerial resupply system for U.S. Marine Corps

    The firm-fixed-price, multiple-award contract has a period of performance of 18 months to build a single prototype for the Marine Corps

  • Avion de combat: la DGA admet que "la situation du SCAF est toujours bloquée"

    June 2, 2022 | International, Aerospace

    Avion de combat: la DGA admet que "la situation du SCAF est toujours bloquée"

    Selon Joël Barre, délégué général de l'armement, les différents industriels entre Dassault et Airbus bloquent toujours le programme d'avion européen du futur.

  • Two Men & A Bot: Can AI Help Command A Tank?

    July 27, 2020 | International, Land

    Two Men & A Bot: Can AI Help Command A Tank?

    Instead of a traditional three-man crew, Brig. Gen. Coffman told Breaking Defense, “you have two humans with a virtual crew member, [sharing] the functions of gunning, driving, and commanding.” By SYDNEY J. FREEDBERG JR.on July 27, 2020 at 7:00 AM WASHINGTON: Field tests and computer models have convinced the Army that future armored vehicles can fight with just two human crew, assisted by automation, instead of the traditional three or more, the service's armor modernization chief told me. That confidence drove the Army, in its draft Request For Proposals released on the 17th, to require a two-soldier crew for its future Optionally Manned Fighting Vehicle. The OMFV is scheduled to enter service in 2028 to replace the Reagan-era M2 Bradley, which has the traditional trio of commander, gunner, and driver. (Both vehicles can also carry infantry as passengers, and the Army envisions the OMFV being operated by remote control in some situations). The Army has already field-tested Bradleys modified to operate with a two-soldier crew instead of the usual three, said Brig. Gen. Richard Ross Coffman, the director of Army Futures Command's Cross Functional Team for Next Generation Combat Vehicles. “As we speak,” he told me in an interview last week, “we've got those Mission-Enabling Technology Demonstrators, or MET-D, actually maneuvering at Fort Carson, Colorado, as part of the Robotic Combat Vehicle test.” With the benefit of modern automation, Coffman said, those two-soldier crews have proven able to maneuver around obstacles, look out for threats, and engage targets — without being overwhelmed by too many simultaneous demands. “They're doing that both in simulation and real world at Carson right now,” Coffman told me. “You have two humans with a virtual crewmember that will remove cognitive load from the humans and allow the functions of gunning, and driving, and commanding the vehicle to be shared between humans and machines,” Coffman said. “We think that the technology has matured to the point where ...this third virtual crewmember will provide the situational awareness to allow our soldiers to fight effectively.” The defense contractors who would have to build the vehicle – even if a government team designs it – aren't so sure. “A two-man crew will be overwhelmed with decision making, no matter how much AI is added,” one industry source told me. A Persistent Dilemma For at least eight decades, combat vehicle designers have faced a dilemma. A smaller crew allows a smaller vehicle, one that's cheaper, lighter, and harder to hit – and if it is hit, puts fewer lives at risk. But battlefield experience since 1940 has shown that smaller crews are easily overwhelmed by the chaos of combat. Historically, an effective fighting vehicle required a driver solely focused on the path ahead, a gunner solely focused on hitting the current target, and a commander looking in all directions for the next target to attack, threat to avoid, or path to take. (Many vehicles added a dedicated ammunition handler and/or radio operator as well). A “virtual crewmember” could solve this dilemma — but will the technology truly be ready by the late 2020s? The Army actually tackled this question just last year and came to the opposite conclusion. You see, the draft Request For Proposals released last week is the Army's second attempt to launch the OMFV program. In March 2019, the Army issued its original RFP for an Optionally Manned Fighting Vehicle. In most respects, the 2019 RFP was much more demanding than last week's draft: It wanted the vehicle in service two years earlier, in 2026 instead of 2028, and it had such stringent requirements for weight and amor protection that no company managed to meet them, leading the Army to start over. But for all its ambition in other aspects, the 2019 RFP did not mandate a two-person crew; that's a new addition for the 2020 version. It's worth noting that just one company managed to deliver a prototype by the Army's original deadline in 2019: General Dynamics. They built their vehicle to operate with a crew of three – but with the option to go down to two as automation improved. At the same time, the Army started experimenting with Robotic Combat Vehicles that had no human crew aboard at all. The long-term goal is to have a single soldier oversee a whole wolfpack of RCVs, but the current proto-prototypes are operated by remote control, with a crew of two: a gunner/sensor operator and a driver. The Army has been impressed by how well these teleoperated RCVs have performed in field trials. If two soldiers can effectively operate a vehicle they're not even in, might two be enough to operate a manned vehicle as well? The other piece of the experimental RCV unit is the mothership, an M2 Bradley with its passenger cabin converted to hold the teleoperators and their workstations. These modified M2s, called MET-Ds, also operate with just two crewmembers, a gunner and a driver – without a separate commander – and, says Coffman, they've done so successfully in combat scenarios. The Army is not just adding automation to individual vehicles. It's seeking to create combined units of manned and unmanned war machines that share data on threats and targets over a battlefield network, allowing them to work together as a seamless tactical unit that's far more than the sum of its parts. “This [vehicle] will not fight alone, but as part of a platoon, a company, a battalion,” Coffman said. “The shared situational awareness across that formation will transform the way we fight.”

All news